INTERNATIONAL STANDARD

ISO 14146

Second edition 2018-07

Radiological protection — Criteria and performance limits for the periodic evaluation of dosimetry services

Radioprotection — Critères et limites de performance pour l'évaluation périodique des services de dosimétrie

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14146:2018 https://standards.iteh.ai/catalog/standards/sist/ca47edd5-9c0d-4643-9f44-a9c90082edcd/iso-14146-2018

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14146:2018 https://standards.iteh.ai/catalog/standards/sist/ca47edd5-9c0d-4643-9f44-a9c90082edcd/iso-14146-2018

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org Published in Switzerland

ii

Contents		Page
Fore	reword	iv
1	Scope	1
2	Normatives references	1
3	Terms and definitions	2
4	Quantities measured	
5	Frequency of evaluation	4
6	Test conditions 6.1 Standard test conditions and special handling conditions 6.2 Radiation 6.3 Dose range	4 4
7	Performance limits 7.1 Limits 7.1.1 Personal and area dosemeters 7.1.2 Environmental dosemeters for Cs-137 and environmental 7.2 Approval criterion	6 6
8	Operational procedures 8.1 Evaluation sample size 8.2 Evaluation procedure ANDARD PREVIEW 8.3 Evaluation sequence	7
9	Test report (standards.iteh.ai)	9
Ann Bibl	hnex A (informative) Graphical illustrations of the performance limits ISO 14146:2018 bliography https://standards.iteh.ai/catalog/standards/sist/ca47edd5-9c0d-4643-9f44	10

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of the standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 85, *Nuclear energy, nuclear technologies, and radiological protection*, Subcommittee SC 2, *Radiological protection*.

https://standards/sist/ca47edd5-9c0d-4643-9f44-

This second edition of ISO 14146 cancels and replaces the first edition (ISO 14146:2000) of which it constitutes a technical revision. The main change with respect to the previous edition is the inclusion of beta and neutron radiation as well as eye, extremity and area dosemeters.

Radiological protection — Criteria and performance limits for the periodic evaluation of dosimetry services

1 Scope

The quality of a supplier of a dosimetry service depends on both the characteristics of the approved (type-tested) dosimetry system¹⁾ and the training and experience of the staff, together with the calibration procedures and quality assurance programmes.

This document specifies the criteria and the test procedures to be used for the periodic verification of the performance of dosimetry services supplying personal and/or area dosemeters.

An area dosemeter can be a workplace dosemeter or an environmental dosemeter.

The performance evaluation can be carried out as a part of the approval procedure for a dosimetry system or as an independent check to verify that a dosimetry service fulfils specified national or international type test performance requirements under representative exposure conditions that are expected or mimic workplace fields from the radiological activities being monitored.

This document applies to personal and area dosemeters for the assessment of external photon radiation with a (fluence weighted) mean energy between 8 keV and 10 MeV, beta radiation with a (fluence weighted) mean energy between 60 keV and 1,2 MeV, and neutron radiation with a (fluence weighted) mean energy between 25,3 meV (i.e. thermal neutrons with a Maxwellian energy distribution with kT = 25,3 meV) and 200 MeV.

It covers all types of personal and area dose meters needing laboratory processing (e.g. thermoluminescent, top tically stimulated luminescence, radiophotoluminescent, track detectors or photographic-film dosemeters) and involving continuous measurements or measurements repeated regularly at fixed time intervals (e.g. several weeks, one month).

Active dosemeters (for dose measurement) may also be treated according to this document. Then, they should be treated as if they were passive (i.e. the dosimetry service reads their indicated values and reports them to the evaluation organization).

2 Normatives references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 4037-1, X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy — Part 1: Radiation characteristics and production methods

ISO 6980-1, Nuclear energy — Reference beta-particle radiation — Part 1: Methods of production

ISO 8529-1, Reference neutron radiations — Part 1: Characteristics and methods of production

ISO 12789-1, Reference radiation fields — Simulated workplace neutron fields — Part 1: Characteristics and methods of production

ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories

¹⁾ If this document is applied to a dosimetry system for which no approval (pattern or type test) has been provided, then in the following text approval or type test should be read as the technical data sheet provided by the manufacturer or as the data sheet required by the regulatory authority.

ISO 14146:2018(E)

ISO/TS 18090-1, Radiological protection — Characteristics of reference pulsed radiation — Part 1: Photon radiation

ISO 29661, Reference radiation fields for radiation protection — Definitions and fundamental concepts

ISO/IEC Guide 98-3, *Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)*

IEC 61267, Medical diagnostic X-ray equipment — Radiation conditions for use in the determination of characteristics

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 29661 and the following apply.

3.1

approved dosemeter

approved dosimetry system

personal or area dosemeter and associated processing system that has been approved or authorized for use by the qualification body

Note 1 to entry: Several dosemeters designs can be operated using the same associated processing system (dosemeter reader, etc.). Then, they are regarded as several dosemeters/dosimetry systems.

3.2

control (background) dosemeter STANDARD PREVIEW

personal or area dosemeter that provides an estimate of any radiation dose received by the evaluation sample apart from that given by the irradiating laboratory item. al

Note 1 to entry: The control dosemeter provides a means of estimating and eliminating the contribution to the dose from background radiation and that received during the time between zeroing and read out, i.e. the dose during handling, transportation. system and read out, i.e. the dose during handling, transportation. a9c90082edcd/iso-14146-2018

3.3

dosemeter

dosimetry system

radiation meter designed to measure quantities such as an absorbed dose or a dose equivalent

Note 1 to entry: In a wider sense, this term is used for meters designed to measure other quantities related to radiation such as exposure, fluence, etc. Such use is deprecated.

Note 2 to entry: This apparatus may require a separate reader to read out the absorbed dose or dose equivalent.

3.4

dosimetry service

organization that operates a personal and/or area dosimetry system which includes the evaluation of the reading of dosemeters after their use and includes:

- providing the user with dosemeters;
- recording the results;
- reporting the results to the user.

Note 1 to entry: The dosimetry service fulfils basic quality management and independency requirements if it fulfils the requirements stated in ISO/IEC 17025.

Note 2 to entry: The user includes not only external clients but also internal personnel who wear dosemeters provided by their own organization and are engaged in radiation protection activities inside or outside the organization. The same quality of dosimetry service which is provided to external users is also provided to organizations' employees (internal users), in accordance with their own quality management system.

3.5

evaluation sample

randomly selected representative group of personal or area dosemeters used to evaluate the performance of a dosimetry service

Note 1 to entry: The evaluation sample includes dosemeters that are irradiated, remain unirradiated or serve as control dosemeters for the evaluation procedure.

independent evaluation organization

evaluation organization

independent organization that administers the performance evaluation of dosimetry services and assesses the results

Note 1 to entry: The evaluation organization may include the irradiating laboratory.

Note 2 to entry: The evaluation organization fulfils basic quality management and independency requirements if it fulfils the requirements stated in ISO/IEC 17025.

3.7

independent irradiating laboratory

irradiating laboratory

independent laboratory possessing radiation sources, calibration equipment and associated facilities [all traceable to national (i.e. to primary or secondary) standards] that is able to irradiate dosemeters from the evaluation sample to a high degree of accuracy

Note 1 to entry: The irradiating laboratory fulfils basic quality management and independency requirements if it fulfils the requirements stated in ISO/IEC 17025. (Standards.iteh.ai)

3.8

independent qualification body

ISO 14146:2018

qualification body_{https://standards.iteh.ai/catalog/standards/sist/ca47edd5-9c0d-4643-9f44-independent organization empowered by a governmental regulatory or advisory agency to approve a} dosimetry service or authorize the use of a dosimetry system

Note 1 to entry: The qualification body may include the evaluation organization (see 3.6).

Note 2 to entry: The qualification body fulfils basic quality management and independency requirements if it fulfils the requirements stated in ISO/IEC 17025.

indicated value

value of the measurand given directly by a measuring instrument on the basis of its calibration curve

Note 1 to entry: In this document, the indicated value is the one given by the dosimetry systems as the final result of the evaluation algorithm (for example, display of the software, print out) in units of dose equivalent (Sv).

Note 2 to entry: It may be necessary that a measured dose (e.g. by control dosemeters) or a calculated transport and/or background dose be subtracted by the dosimetry service or by the evaluating organization.

3.10

irradiated dose

conventional quantity value of the dose to which the dosemeter is irradiated

3.11

lower dose limit

dose below which irradiations should not be performed

3.12

upper dose limit

 H_{top}

dose above which irradiations should not be performed

Quantities measured

The quantities measured in the evaluation shall be the personal dose equivalent $H_p(10)$, $H_p(3)$ or $H_p(0,07)$, the ambient dose equivalent $H^*(10)$ or the directional dose equivalent H'(3) or H'(0,07) as recommended by the ICRU in Report 47[3] and Report 51[4]. All irradiations for $H_p(d)$ shall be performed on ISO phantoms in accordance with ISO 29661, unless other quantities or other phantoms are specified.

Frequency of evaluation 5

As a general rule, performance evaluations should be repeated at regular intervals, e.g. every one or two years. If any significant change of the dosimetry system or the dosimetry service occurs after an evaluation which may change the performance of the dosimetry service and/or dosimetry system, performing a new evaluation shall be considered.

For approved dosemeters/dosimetry systems only: the qualification body shall be notified of the results of the evaluations and of any significant change of the dosimetry service and/or in the dosimetry system after approval. The qualification body shall recommend a new evaluation when it believes that the modifications may change the performance of the dosimetry service and/or dosimetry system.

iTeh STANDARD PREVIEW

Test conditions

(standards.iteh.ai)

6.1 Standard test conditions and special handling conditions

https://standards.iteh.ai/catalog/standards/sist/ca47edd5-9c0d-4643-9f44-The dosimetry service shall supply complete dosemeter badges j.e. complete dosimeter package worn by a monitored individual or posted as a workplace or environmental monitor. A badge consists of the radiation detector(s), possible supplemental filtering materials, labelling and/or identification typically placed within an enclosure suitable for the environment used and equipped with a means to attach the enclosure to the wearer or within the workplace/environment (e.g., a clip).

The dosimetry service shall not be aware of the radiation qualities and doses used for the irradiations.

One or more dosemeter can be irradiated per irradiation condition.

The quantities which may influence the result, such as ambient temperature, relative humidity, background radiation and contamination by radioactive elements, shall conform to the standard test conditions as given in ISO 29661.

During the performance evaluation cycle, the evaluation sample, including the control dosemeters, shall be stored in environmental conditions that do not affect the measurement results obtained from the dosemeters. Alternative storage conditions may be used in order to mimic real conditions, especially for environmental dosemeters.

The background radiation shall be as small as possible. For an accurate subtraction of the background radiation from the readings of the test dosemeters, the amount of time that the controls and test dosemeters are separated (i.e., the time that it takes to perform the tests) shall be minimized. Ideally, the difference between the accumulated control background and the effective background of the test dosemeters should be less than ± 0.01 mSv, or as small as possible.

6.2 Radiation

The radiation sources shall be chosen from those specified in ISO 4037-1 (reference photon radiation fields), ISO 6980-1 (reference beta radiation fields), ISO 8529-1 (reference neutron radiation fields), ISO 12789-1 [simulated workplace fields with broad energy and angle distributions (e.g., isotropic)], or IEC 61267 (medical diagnostic radiation fields) according to those radiation types for which the system has been approved. In order to mimic real workplace conditions, other radiation fields may be used if qualified reference dose measurements are performed. Mixtures may also be used. Pulsed reference photon radiation fields shall be chosen from those specified in ISO/TS 18090-1 or other specified radiation fields.

Additional reference fields of natural environmental radiation may be chosen to evaluate environmental dosemeters.

NOTE 1 The conventional quantity value for natural environmental radiation can be assessed as described in the literature [6].

NOTE 2 Values for the conversion coefficients from air kerma, K_a to $H_p(3)$ are not contained in ISO 4037 series. They can, however, be found in the literature [7].

NOTE 3 Conversion coefficients from air kerma to the operational quantities for medical diagnostic radiation fields according to IEC 61267 can be determined as described in the literature [\mathbb{Z}]. Selected values can be found in the literature [\mathbb{B}][\mathbb{S}][\mathbb{S}][\mathbb{S}][\mathbb{S}][\mathbb{S}].

The choice of radiation qualities and angles of incidence should be guided by the following considerations:

- attempts should be made to vary the radiation qualities used for repeated performance evaluations
 of the same dosimetry system or the same dosimetry service one radiation quality should be left
 unchanged from evaluation to evaluation to assess the calibration control;
- the radiation qualities and angles of incidence should be selected from the range of energies and angles of incidence for which all dosimetry systems taking part in the evaluation have been approved;
- the majority of radiation qualities and angles of incidence should be similar to the conditions found in routine radiation surveillance in order to prevent evaluations from emphasizing performance under extreme conditions.

Radiation qualities with broad energy spectra (e.g. the photon "wide spectrum" series and the photon "high air kerma rate" series) can be used only when their spectra ensure that most of the radiation (at least 90 % fluence weighted) is within the range of energies for which the system — or, if several dosimetry systems take part in the evaluation, for which the majority of the dosimetry systems — has been approved.

Mixtures of two or more radiation qualities may be appropriate in order to mimic workplace fields [e.g. two different energies and/or angles of incidence of the same radiation type, or different radiation types, (e.g. beta and photon radiation or photon and neutron radiation)].

6.3 Dose range

Testing shall be consistent with the dose range for which all dosimetry systems taking part in the evaluation have been approved. The choice of the dose values, H_{ref} , should be guided by the following considerations:

- attempts should be made to vary the dose values used for repeated performance evaluations of the same dosimetry system or the same dosimetry service;
- the majority of irradiated doses should be similar to the conditions found in routine radiation surveillance in order to prevent evaluations from emphasizing performance under extreme conditions;
- the dose values should not be less than H_0 :
 - 10 μSv for environmental dosemeters measuring $H^*(10)$;