FINAL DRAFT

INTERNATIONAL STANDARD

ISO/FDIS 2811-1

ISO/TC 35/SC 9

Secretariat: BSI

Voting begins on: 2015-10-22

Voting terminates on: 2015-12-22

Paints and varnishes — **Determination of density** —

Letern . es et vernis - Déte. . tie 1: Méthode pycnomét. Part 1: Pycnometer method

Peintures etvernis Détermination de la masse volumique — Partie 1: Méthode pycnométrique

Please see the administrative notes on page iii

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STAN-DARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

Reference number ISO/FDIS 2811-1:2015(E)

ISO/CEN PARALLEL PROCESSING

This final draft has been developed within the International Organization for Standardization (ISO), and processed under the **ISO-lead** mode of collaboration as defined in the Vienna Agreement. The final draft was established on the basis of comments received during a parallel enquiry on the draft.

This final draft is hereby submitted to the ISO member bodies and to the CEN member bodies for a parallel two-month approval vote in ISO and formal vote in CEN.

Positive votes shall not be accompanied by comments.

Negative votes shall be accompanied by the relevant technical reasons.

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Fore	word	iv
1	Scope	
2	Normative references	
3	Terms and definitions	
4	Principle	
5	Temperature	
6	Apparatus	2
7	Sampling	2
8	Procedure 8.1 General 8.2 Determination	2 2 3
9	Calculation	4
10	Precision 10.1 Repeatability limit, r 10.2 Reproducibility limit, R	
11	Test report	4
Anno	ex A (informative) Example of a calibration method	6
Anno	ex B (informative) Temperature variation	
Bibliography		
	Hell - Get Filester alle and	

ISO/FDIS 2811-1:2015(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 2811-1 was prepared by Technical Committee ISO/TC 35, Paints and varnishes, Subcommittee SC 9, *General test methods for paints and varnishes*.

This third edition cancels and replaces the second edition (ISO 2811-1:2011), which has been technically revised with the following changes:

- a) the information on the accuracy of the analytical balance (6.2) and the thermometer (6.3) was changed;
- b) a requirement was added that the sample shall be free from air bubbles;
- c) the spelling of pycnometer was corrected.

ISO 2811 consists of the following parts, under the general title *Paints and varnishes* — *Determination of density*:

- Part 1: Pycnometer method
- Part 2: Immersed body (plummet) method
- Part 3: Oscillation method
- Part 4: Pressure cup method

Paints and varnishes — Determination of density —

Part 1: **Pycnometer method**

1 Scope

This part of ISO 2811 specifies a method for determining the density of paints, varnishes and related products using a metal or Gay-Lussac pycnometer.

The method is limited to materials of low or medium viscosity at the temperature of test. The Hubbard pycnometer (see ISO 3507) can be used for highly viscous materials.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1513, Paints and varnishes — Examination and preparation of test samples

ISO 15528, Paints, varnishes and raw materials for paints and varnishes — Sampling

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

density

ρ

mass divided by the volume of a portion of a material

Note 1 to entry: It is expressed in grams per cubic centimetre.

4 Principle

A pycnometer is filled with the product under test. The density is calculated from the mass of the product in the pycnometer and the known volume of the pycnometer.

5 Temperature

The effect of temperature on density is highly significant with respect to filling properties, and varies with the type of product.

For international reference purposes, it is essential to standardize one test temperature, and $(23,0 \pm 0,5)$ °C is specified in this part of ISO 2811. It can be more convenient, however, to carry out comparative testing at some other agreed temperature, for example $(20,0 \pm 0,5)$ °C, as specified by relevant weights and measures legislation (see <u>B.2</u>).

The test sample and pycnometer shall be conditioned to the specified or agreed temperature, and it shall be ensured that the temperature variation does not exceed 0,5 $^{\circ}$ C during testing.

6 Apparatus

Ordinary laboratory apparatus and glassware, together with the following.

6.1 Pycnometer

6.1.1 Metal pycnometer, with a volume of either 50 cm³ or 100 cm³, a circular cross-section and a cylindrical form, made of a smoothly finished corrosion-resistant material with a snugly fitting lid having a hole in its centre.

The inside of the lid shall be concave (see Figure 1).

or

6.1.2 Glass pycnometer, with a volume in the range 10 cm³ to 100 cm³ (Gay-Lussac type) (see Figure 2).

6.2 Analytical balance, accurate to 1 mg for pycnometers for less than 50 ml or accurate to 10 mg for 50 ml to 100 ml pycnometers.

The accuracy of the balance required depends on the size of the pycnometer used (see also <u>8.2</u>).

6.3 Thermometer, with an accuracy of 0,2 °C.

NOTE Typically, a thermometer with an accuracy of 0,2 °C has a resolution of 0,05 °C.

6.4 Temperature-controlled chamber, capable of accommodating the balance, pycnometer and test sample and maintaining them at the specified or agreed temperature (see <u>Clause 5</u>), or **water bath**, capable of maintaining the pycnometer and test sample at the specified or agreed temperature.

7 Sampling

Take a representative sample of the product under test as described in ISO 15528.

Examine and prepare the sample as described in ISO 1513. The sample shall be free from any air bubbles.

8 Procedure

8.1 General

Carry out a single determination on a fresh test sample.

The pycnometer shall be calibrated. An example of a calibration method is given in <u>Annex A</u>.

Figure 1 — Metal pycnometer

8.2 Determination

If working with a temperature-controlled chamber (see 6.4), put the pycnometer (6.1) and the test sample next to the balance (6.2) in the chamber maintained at the specified or agreed temperature.

If working with a water bath (see 6.4) rather than a temperature-controlled chamber, put the pycnometer and the test sample in the water bath, maintained at the specified or agreed temperature.

Allow approximately 30 min for temperature equilibrium to be reached.

Using the thermometer (6.3), measure the temperature, $t_{\rm T}$, of the test sample.

Check throughout the determination that the temperature of the chamber or water bath remains within the specified limits.

Weigh the pycnometer and record the mass, m_1 , to the nearest 10 mg for 50 cm³ to 100 cm³ pycnometers and to the nearest 1 mg for pycnometers less than 50 cm³ in volume.

Fill the pycnometer with the product under test, taking care to avoid the formation of air bubbles. Place the lid or stopper of the pycnometer firmly in position and wipe off any excess liquid from the outside of the pycnometer with an absorbent material wetted with solvent; wipe carefully with cotton wool.

Record the mass of the pycnometer filled with the product under test, m_2 .

NOTE Liquid adhering to the ground-glass surfaces of a glass pycnometer or to the areas of contact between the lid and body of a metal pycnometer causes too high a balance reading. This source of error can be minimized by ensuring that the joints are firmly seated and by limiting air bubbles.

9 Calculation

Calculate the density, ρ , of the product, in grams per cubic centimetre, at the test temperature, $t_{\rm T}$, using Formula (1):

$$\rho = \frac{m_2 - m_1}{V_t} \tag{1}$$

where

- m_1 is the mass, in grams, of the empty pycnometer;
- m_2 is the mass, in grams, of the pycnometer filled with the product at the test temperature, t_T ;
- V_t is the volume, in cubic centimetres, of the pycnometer at the test temperature, t_T , determined in accordance with <u>Annex B</u>.

NOTE The result is not corrected for air buoyancy because the uncorrected value is required by most filling-machine control procedures and the correction $(0,001,2 \text{ g/cm}^3)$ is negligible in relation to the precision of the method.

If the test temperature used is not the reference temperature, the density may be calculated using Formula (B.2).

10 Precision

10.1 Repeatability limit, *r*

The value below which the absolute difference between two single test results, obtained on identical material by one operator in one laboratory using the same equipment within a short interval of time using the standardized test method, may be expected to lie, with a 95 % probability, is

- 0,001 g/cm³ for solvents, and
- 0,005 g/cm³ for coating materials.

10.2 Reproducibility limit, *R*

The value below which the absolute difference between two test results, obtained on identical material by operators in different laboratories using the standardized test method, may be expected to lie, with a 95 % probability, is

- 0,002 g/cm³ for solvents, and
- 0,007 g/cm³ for coating materials.

11 Test report

The test report shall include at least the following information:

- a) all details necessary to identify the product tested;
- b) a reference to this part of ISO 2811, i.e. ISO 2811-1;

- c) the type of pycnometer used;
- d) the test temperature;
- e) the result of the density measurement, in grams per cubic centimetre, rounded to the nearest 0,001 g/cm³ for pycnometers less than 50 cm³ in volume and to the nearest 0,01 g/cm³ for 50 cm³ to 100 cm³ pycnometers;
- f) any deviation from the test method specified;
- g) any unusual features (anomalies) observed during the test;
- h) the date of the test.

Hen Standards in the st