INTERNATIONAL STANDARD

Fourth edition 2009-07-01

AMENDMENT 1 2016-04-15

Displacement compressors — Acceptance tests

AMENDMENT 1: Calculation of isentropic efficiency and relationship with specific energy

iTeh STCompresseurs volumétriques – Essais de réception AMENDEMENT 1: Calcul du rendement isentropique et relation avec l'énergie spécifique

ISO 1217:2009/Amd 1:2016 https://standards.iteh.ai/catalog/standards/sist/5a735aa1-5480-4fcf-b282-30157f2c670c/iso-1217-2009-amd-1-2016

Reference number ISO 1217:2009/Amd.1:2016(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 1217:2009/Amd 1:2016</u> https://standards.iteh.ai/catalog/standards/sist/5a735aa1-5480-4fcf-b282-30157f2c670c/iso-1217-2009-amd-1-2016

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

Amendment 1 to ISO 1217:2009 was prepared by Technical Committee ISO/TC 118, Compressors and pneumatic tools, machines and equipment, Subcommittee SC 6, Air compressors and compressed air systems.

https://standards.iteh.ai/catalog/standards/sist/5a735aa1-5480-4fcf-b282-30157f2c670c/iso-1217-2009-amd-1-2016

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 1217:2009/Amd 1:2016 https://standards.iteh.ai/catalog/standards/sist/5a735aa1-5480-4fcf-b282-30157f2c670c/iso-1217-2009-amd-1-2016

Displacement compressors — Acceptance tests

AMENDMENT 1: Calculation of isentropic efficiency and relationship with specific energy

Page 6, 3.5.1

Replace the term and definition with the following:

isentropic power

power that is theoretically required to compress an ideal gas under constant entropy, from given inlet conditions to a given discharge pressure

Note 1 to entry The term "ideal gas" is used to indicate any gas in a condition or state so that it follows closely the ideal gas law.

Page 6, 3.6.1

Replace the term and definition with the following: **DREVIEW**

isentropic efficiency

(standards.iteh.ai)

ratio of the required isentropic power to measured power for the same specified boundaries with the same gas and the same inlet conditions and outlet pressure

$$\eta_{\text{isen}} = \frac{P_{\text{isen}}}{P_{\text{real}}}$$

https://standards.iteh.ai/catalog/standards/sist/5a735aa1-5480-4fcf-b282-30157f2c670c/iso-1217-2009-amd-1-2016

Note 1 to entry Examples of specified boundaries may be shaft power of bare compressor or motor power of the package including inlet and discharge losses or total input power of the package.

Note 2 to entry In many turbo compressor textbooks, the adiabatic stage gas power $P_i = \Delta h \cdot q_m = (h_2 - h_1) \cdot q_m$

is taken as P_{real} . Isentropic efficiency is then defined as $\eta_{\text{isen}} = \frac{P_{\text{isen}}}{\Delta h \cdot q_m} = \frac{\Delta h_{\text{isen}}}{\Delta h}$. In this special case, the most

narrow boundaries are used which are enclosing only the gas volume. In this sense, it corresponds with the formula for isentropic efficiency given in ISO 5389:2005, Formula (E.101).

Page 64, Annex G

Add a new Annex H as follows.

Annex H

(informative)

Isentropic efficiency and its relation to specific energy requirement

H.1 General

This annex provides general derivation of isentropic power and calculations for the relationship between isentropic efficiency as defined in this annex and specific energy requirement in accordance with this International Standard.

No additional data or measurements are required for the calculation of isentropic power and isentropic efficiency.

This annex also provides calculations for the relative tolerances between specific power and isentropic efficiency.

H.2 Symbols and subscripts

iTeh STable A.D.Asymbols REVIEW

Symbol	Teshandards.itel	1.asj unit	Other practical units
Cp	specific heat at constant pressure	J/(kg·K)	—
h	specific enthalpy	16 J/kg	kJ/kg
Δh	specific enthalpy difference 217-2009-an	d-1-20/kg	kJ/kg
Р	power	W	MW, kW
р	pressure	Pa	MPa, bar, mbar
Δp	pressure difference	Ра	MPa, bar, mbar
R	gas constant	J/(kg·K)	
Т	absolute temperature	К	
q_m	mass rate of flow	kg/s	kg/h
q_V	volume flow rate	m ³ /s	m ³ /h, m ³ /min, L/s
K	isentropic exponent (ratio of specific heats)		min ⁻¹
L	lower limit		
η	efficiency		
ρ	density	kg/m ³	
U	upper limit		

Table H.2 — Subscripts

Subscript	Term	Remark
isen	isentropic	
η	efficiency	
т	mass	Characterizes the mass-specific rates of flow, energies and volumes
Р	power	
real	real	

Table H.2 (continued)

Subscript	Term	Remark
spec	specific	
V	volume	Characterizes the volume-specific rates of flow and energy
1,2	states	

H.3 Derivation of isentropic power

The power required for isentropic compression can be derived from basic relationships:

$$P_{\text{isen}} = \Delta h_{\text{isen}} \cdot q_m \quad \text{with} \quad q_m = q_V \cdot \rho = \frac{p_1}{RT_1} \quad (\text{ideal gas})$$
(H.1)

Isentropic enthalpy difference:

$$\Delta h_{\text{isen}} = c_p \cdot \left[T_{2,\text{isen}} - T_1 \right] \text{ (ideal gas)} \tag{H.2}$$

with

$$c_p = R \cdot \frac{K}{\left(K - 1\right)} \tag{H.3}$$

follows:

$$\Delta h_{\text{isen}} = \frac{K}{K-1} R T_1 \cdot \left[\frac{T_{2,\text{isen}}}{T_1} - 1 \right] (\text{standards.iteh.ai})$$
(H.4)

With the isentropic relation $\frac{1\text{SO} 1_2\text{A}_12009/\text{Amd} 1:2016}{2_1\text{sen}}$ $\frac{2_1\text{sen}}{T_1}$ $\frac{1\text{SO} 1_2\text{A}_12009/\text{Amd} 1:2016}{T_1}$

$$\Delta h_{\text{isen}} = \frac{K}{K-1} RT_1 \cdot \left[\left(\frac{p_2}{p_1} \right)^{\frac{K-1}{K}} - 1 \right]$$
(H.5)

and for the power required for isentropic compression:

$$P_{\text{isen}} = q_m \Delta h_{\text{isen}} = q_{V1} \cdot \frac{p_1}{RT_1} \Delta h_{\text{isen}}$$

$$P_{\text{isen}} = q_{V1} \cdot \frac{p_1}{RT_1} \frac{K}{K-1} RT_1 \cdot \left[\left(\frac{p_2}{p_1} \right)^{\frac{K-1}{K}} - 1 \right]$$

$$P_{\text{isen}} = q_{V1} \cdot p_1 \frac{K}{K-1} \cdot \left[\left(\frac{p_2}{p_1} \right)^{\frac{K-1}{K}} - 1 \right]$$
(H.6)

which is the most widely used version of the formula for isentropic power.

The formulae above show that no additional data have to be measured for the calculation of isentropic power and isentropic efficiency.

Where performance guarantee values are to be determined, then the correction factors to be applied shall be done in accordance with C.4.

H.4 Relationship between isentropic efficiency and specific energy requirement

"Specific energy requirement" (SER) or more precisely "specific power requirement" is defined as

$$P_{\rm spec} = \frac{P_{\rm real}}{q_{V1}} \tag{H.7}$$

The relation of "isentropic efficiency" to "specific power requirement" can be derived using

$$\frac{1}{\eta_{\text{isen}}} = \frac{P_{\text{real}}}{P_{\text{isen}}} \text{ and } P_{\text{isen}} = q_{V1} \cdot p_1 \frac{K}{K-1} \cdot \left[\left(\frac{p_2}{p_1} \right)^{\frac{K-1}{K}} - 1 \right]$$
(H.8)

to build

$$\frac{1}{\eta_{\text{isen}}} = \frac{\left(\frac{P_{\text{real}}}{q_{V1}}\right)}{P_{\text{spec}}} \cdot \frac{1}{p_1 \frac{K}{K-1} \cdot \left[\left(\frac{p_2}{p_1}\right)^{\frac{K-1}{K}} - 1\right]}$$
(H.9)

$$\frac{1}{\eta_{\text{isen}}} = P_{\text{spec}} \cdot \frac{1}{p_1 \frac{K}{K-1} \cdot \left[\left(\frac{p_2}{p_1} \right)^K - 1 \right] \text{FANDARD PREVIEW}}$$
(H.10)

$$\frac{1}{k + 1} = \frac{1}{k + 1} \cdot \left[\left(\frac{p_2}{p_1} \right)^K - 1 \right] \text{FANDARD PREVIEW}$$
(H.10)

or alternatively

$$\eta_{\text{isen}} = \frac{1}{P_{\text{spec}}} \cdot p_1 \frac{K}{K-1} \cdot \left[\frac{p_2}{p_1} \right]^{\frac{K-1}{K}} - 1 \right]$$
(H.11)

Therefore, if the operating conditions are known, the calculation of isentropic efficiency from specific energy requirement and vice versa is unambiguous.

Tolerances H.5

As isentropic efficiency can be calculated from specific power requirement without additional data to be measured and vice versa (see above), their relative tolerances are directly related as well. As isentropic efficiency is proportional to the reciprocal of specific power requirement [see Formulae (H.9)] or (H.10)], the algebraic signs of the tolerance values change and the values have to be converted.

Let P_{spec} have a lower limit L_P and an upper limit U_P , both given as relative values in percentage.

Then, *P*_{spec} can have values between

$$\frac{\left(100 - \left(L_{P}\left[\%\right]\right)\right)}{100} \times P_{\text{spec}} \text{ and } \frac{\left(100 + \left(U_{P}\left[\%\right]\right)\right)}{100} \times P_{\text{spec}}$$
(H.12)

Due to the inverse relation between isentropic efficiency and specific power requirement, η_{isen} can then have values between

$$\frac{100}{\left(100 + \left|U_{P}\left[\%\right]\right]\right)} \cdot \eta_{\text{isen}} \text{ and } \frac{100}{\left(100 - \left|L_{P}\left[\%\right]\right]\right)} \cdot \eta_{\text{isen}}$$
(H.13)

Introducing a lower limit, L_{η} , and an upper limit, U_{η} , for η_{isen} , both given as relative values in percentage, it is obviously as well true that η_{isen} can then have values between

$$\frac{\left(100 - \left|L_{\eta}\left[\%\right]\right|\right)}{100} \cdot \eta_{\text{isen}} \text{ and } \frac{\left(100 - \left|U_{\eta}\left[\%\right]\right|\right)}{100} \cdot \eta_{\text{isen}}$$
(H.14)

From the last two equations, it follows that

$$\frac{\left(100 - \left|L_{\eta}\left[\%\right]\right|\right)}{100} = \frac{100}{\left(100 + \left|U_{P}\left[\%\right]\right|\right)} \text{ and } \frac{\left(100 + \left|U_{\eta}\left[\%\right]\right|\right)}{100} = \frac{100}{\left(100 - \left|L_{P}\left[\%\right]\right|\right)}$$
(H.15)

which can be solved to Teh STANDARD PREVIEW

$$\left|L_{\eta}\left[\%\right]\right| = 100 - \frac{10000}{\left(100 + \left|U_{p}\left[\%\right]\right|\right)} \text{ and } \left|U_{\eta}\left[\%\right]\right| \text{ for } 10000 \text{ (H.16)}$$

$$\left(100 - \left|L_{p}\left[\%\right]\right|\right) = 100$$

For example, the tolerances of P_{spec} from Annex Care therefore converted as shown in Table H.3. https://standards.iteh.ai/catalog/standards/sist/5a735aa1-5480-4fcf-b282-

Table H.3 — Tolerances on isentropic efficiency

Volume flow rate at specified conditions (m ³ /s)·10 ⁻³	P _{spec} tolerances (%)		Corresponding η_{isen} tolerances as percentage of the efficiency value (%)	
	U_P	L_P	L_{η}	U_η
$0 < q_V \le 8,3$	+8	-8	-7,4	8,7
$8,3 < q_V \le 25$	+7	-7	-6,5	7,5
$25 < q_V \le 250$	+6	-6	-5,7	6,4
<i>q_V</i> > 250	+5	-5	-4,8	5,3

The tolerances on isentropic efficiency in <u>Table H.3</u> are percentages of percentages. To calculate the tolerance on the isentropic efficiency in percentage points, the tolerance percentage is multiplied with the percentage value of the isentropic efficiency.

EXAMPLE

A specific energy requirement of 402 kW/(m^3/s) is given for a compressor that compresses dry air (K = 1,4) from 101 300 Pa to 750 000 Pa. Using Formula (H.15), an isentropic efficiency of 68,1 % is calculated.

The specific energy requirement of a second compressor for the same compression task is 7 % higher, therefore 430,14 kW/(m³/s). Using Formula (H.15), an isentropic efficiency of 63,7 % is calculated. This efficiency is 6,54 % (or, in this case, 4,4 percentage-points) lower than that of the first compressor.

The specific energy requirement of a third compressor for the same compression task is 7 % lower, therefore 373,86 kW/(m³/s). Using Formula (H.15), an isentropic efficiency of 73,2 % is calculated. This efficiency is 7,53 % (or, in this case, 5,1 percentage-points) higher than that of the first compressor.