

## SLOVENSKI STANDARD SIST EN IEC 62209-3:2021

01-junij-2021

Merilni postopki za ocenjevanje stopnje specifične absorpcije pri izpostavljenosti ljudi elektromagnetnim sevanjem brezžičnih komunikacijskih naprav, ki se držijo v roki ali pritrdijo na telo - 3. del: Sistemi vektorskega merjenja (frekvenčno območje od 600 MHz do 6 GHz)

Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz) **iTeh STANDARD PREVIEW** 

### (standards.iteh.ai)

SIST EN IEC 62209-3:2021 https://standards.iteh.ai/catalog/standards/sist/1fec7cf4-bc26-4f06-bbf3f8f2f670db20/sist-en-iec-62209-3-2021

Ta slovenski standard je istoveten z: EN IEC 62209-3:2019

### ICS:

| 13.280    | Varstvo pred sevanjem |
|-----------|-----------------------|
| 33.050.10 | Telefonska oprema     |

Radiation protection Telephone equipment

SIST EN IEC 62209-3:2021

en

## iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN IEC 62209-3:2021 https://standards.iteh.ai/catalog/standards/sist/1fec7cf4-bc26-4f06-bbf3f8f2f670db20/sist-en-iec-62209-3-2021

## EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

## EN IEC 62209-3

November 2019

ICS 33.060.20

**English Version** 

### Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices -Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz) (IEC 62209-3:2019)

Procédure de mesure pour l'évaluation du débit Messver d'absorption spécifique de l'exposition humaine aux champs radiofréquence produits par les dispositifs de gegenüber communications sans fil tenus à la main ou portes près du un corps - Partie 3: Systèmes basés sur la mesure vectorielle Kommunik (plage de fréquences comprise entre 600 MHz et 6 GHz) (IEC 62209-3:2019) AANDARD PREVIE

Messverfahren für die Beurteilung der spezifischen Absorptionsrate bei der Exposition von Personen gegenüber hochfrequenten Feldern von handgehaltenen und am Körper getragenen schnurlosen Kommunikationsgeräten - Teil 3: Auf Vektormessungen basierende Systeme (Frequenzbereich von 600 MHz bis 6 GHz) (IEC 62209-3:2019)

### (standards.iteh.ai)

This European Standard was approved by CENELEC on 2019-10-29. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. https://standards.iteh.ai/catalog/standards/sist/1fec7cf4-bc26-4f06-bbf3-

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.



European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2019 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

### European foreword

The text of document 106/494/FDIS, future edition 1 of IEC 62209-3, prepared by IEC/TC 106 "Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62209-3:2019.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2020-07-29 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2022-10-29 document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

## iTeh STANDARD PREVIEW (stendorsement holice1)

### SIST EN IEC 62209-3:2021

The text of the International Standard IEC 62209-3:2019 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

| ISO/IEC 17025 | NOTE | Harmonized as EN ISO/IEC 17025                |
|---------------|------|-----------------------------------------------|
| ISO 3611:2010 | NOTE | Harmonized as EN ISO 3611:2010 (not modified) |
| ISO/IEC 17043 | NOTE | Harmonized as EN ISO/IEC 17043                |

### Annex ZA

### (normative)

## Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cenelec.eu</u>.

| Publication        | Year                | <u>Title</u>                                                                                                                                                                                                                                                                                                                                                                       | <u>EN/HD</u>          | Year |
|--------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|
| IEC 62209-1        | 2016<br>iTe         | Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz) PREVER                                                                                                                | EN 62209-1            | 2016 |
| IEC 62209-2        | 2010<br>https://sta | Human exposure to radio frequency fields<br>from hand-held and body-mounted<br>wireless communication devices - Human<br>models, instrumentation, and procedures -<br>Part 2: Procedure to determine the specific<br>absorption dirateist-(SAR) 22 (for 3-2 wireless<br>communication devices used in close<br>proximity to the human body (frequency<br>range of 30 MHz to 6 GHz) | EN 62209-2<br>6-bbf3- | 2010 |
| IEC 62479          | -                   | Assessment of the compliance of low-<br>power electronic and electrical equipment<br>with the basic restrictions related to human<br>exposure to electromagnetic fields (10<br>MHz to 300 GHz)                                                                                                                                                                                     | EN 62479              | -    |
| IEC TR 62630       | 2010                | Guidance for evaluating exposure from multiple electromagnetic sources                                                                                                                                                                                                                                                                                                             | -                     | -    |
| ISO/IEC Guide 98-1 | 2009                | Uncertainty of measurement – Part 1:<br>Introduction to the expression of<br>uncertainty in measurement                                                                                                                                                                                                                                                                            | -                     | -    |
| ISO/IEC Guide 98-3 | 3 -                 | Uncertainty of measurement - Part 3:<br>Guide to the expression of uncertainty in<br>measurement (GUM:1995)                                                                                                                                                                                                                                                                        | -                     | -    |
| IEC/IEEE 62704-1   | -                   | Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 1: General requirements for using the finite difference time-domain (FDTD) method for SAR calculations                                                                                                                          | -                     | -    |

## iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN IEC 62209-3:2021 https://standards.iteh.ai/catalog/standards/sist/1fec7cf4-bc26-4f06-bbf3f8f2f670db20/sist-en-iec-62209-3-2021



Edition 1.0 2019-09

# INTERNATIONAL STANDARD

## NORME INTERNATIONALE



HORIZONTAL STANDARD NORME HORIZONTALE

Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz) https://standards.iteh.ai/catalog/standards/sist/1fec7cf4-bc26-4f06-bbf3f8f2f670db20/sist-en-iec-62209-3-2021

Procédure de mesure pour l'évaluation du débit d'absorption spécifique de l'exposition humaine aux champs radiofréquence produits par les dispositifs de communications sans fil tenus à la main ou portes près du corps – Partie 3: Systèmes basés sur la mesure vectorielle (plage de fréquences comprise entre 600 MHz et 6 GHz)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 33.060.20

ISBN 978-2-8322-7355-5

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

### CONTENTS

| FC | DREWO | RD                                                                               | 9  |
|----|-------|----------------------------------------------------------------------------------|----|
| IN | TRODU | CTION                                                                            | 11 |
| 1  | Scope | 9                                                                                | 12 |
| 2  | Norm  | ative references                                                                 | 12 |
| 3  | Terms | s and definitions                                                                | 13 |
| 4  | Symb  | ols and abbreviated terms                                                        | 14 |
| 5  | Överv | view of the measurement procedure                                                | 14 |
| 6  | Meas  | urement system specifications                                                    | 17 |
| Ŭ  | 6 1   | General requirements                                                             | 17 |
|    | 6.2   | Phantom specifications                                                           | 19 |
|    | 621   | Head phantom specifications – shell                                              | 19 |
|    | 622   | Body phantom specifications – shell                                              | 19 |
|    | 6.2.3 | Tissue-equivalent medium properties                                              | 19 |
|    | 6.3   | Measurement system requirements                                                  | 19 |
|    | 6.3.1 | General                                                                          | 19 |
|    | 6.3.2 | Scanning measurement system specifications                                       | 19 |
|    | 6.3.3 | Array measurement system specifications                                          | 20 |
|    | 6.4   | Device holder specification N.D.A.D.D.D.D.T.V.I.T.V.                             | 21 |
|    | 6.5   | Reconstruction algorithm and peak spatial-averaging specifications               | 22 |
| 7  | Proto | col for SAR assessments and ards.iteh.ai)                                        | 22 |
|    | 7.1   | Measurement preparation                                                          | 22 |
|    | 7.1.1 | General <u>SIST EN IEC 62209-3:2021</u>                                          | 22 |
|    | 7.1.2 | Preparation of tissue-equivalent medium                                          | 22 |
|    | 7.1.3 | System check                                                                     | 23 |
|    | 7.1.4 | Preparation of the device under test (DUT)                                       | 23 |
|    | 7.1.5 | Operating modes                                                                  | 23 |
|    | 7.1.6 | Position of the DUT in relation to the phantom                                   | 23 |
|    | 7.1.7 | Positions of the DUT in relation to the flat phantom for large DUT               | 23 |
|    | 7.1.8 | Test frequencies for DUT                                                         | 24 |
|    | 7.2   | Tests to be performed                                                            | 24 |
|    | 7.3   | General measurement procedure                                                    | 25 |
|    | 7.3.1 | General                                                                          | 25 |
|    | 7.3.2 | Measurement procedure for scanning systems                                       | 25 |
|    | 7.3.3 | Measurement procedure for array systems                                          | 26 |
|    | 7.4   | SAR measurements for simultaneous transmission                                   | 26 |
|    | 7.4.1 | General                                                                          | 26 |
|    | 7.4.2 | SAR measurements for uncorrelated signals                                        | 27 |
|    | 7.4.3 | SAR measurements for correlated signals                                          | 31 |
| 8  | Meas  | urement uncertainty estimation                                                   | 32 |
|    | 8.1   | General                                                                          | 32 |
|    | 8.2   | Requirements on the measurement uncertainty evaluation                           | 32 |
|    | 8.3   | Description of measurement uncertainty models                                    | 33 |
|    | 8.3.1 | General                                                                          | 33 |
|    | 8.3.2 | Uncertainty models for array measurement system and scanning measurement systems | 34 |
|    | 8.3.3 | Example uncertainty budget templates                                             | 35 |

### IEC 62209-3:2019 © IEC 2019

| - 3 - |  |
|-------|--|
|-------|--|

| 9   | Meas         | urement report                                                                | 39       |
|-----|--------------|-------------------------------------------------------------------------------|----------|
| Ann | ex A (       | normative) Phantom specifications                                             | 40       |
| A   | <b>\</b> .1  | SAM phantom specifications                                                    | 40       |
|     | A.1.1        | Justification                                                                 | 40       |
|     | A.1.2        | SAM phantom geometry                                                          | 40       |
|     | A.1.3        | Tissue-equivalent medium                                                      | 40       |
| Α   | <b>.</b> .2  | Flat phantom specifications                                                   | 41       |
| Α   | <b>.</b> .3  | Specific phantoms                                                             | 42       |
| A   | .4           | Tissue-equivalent medium                                                      | 43       |
| Ann | ex B (       | normative) Calibration and characterization of dosimetric probes              | 44       |
| В   | 8.1          | General                                                                       | 44       |
| В   | 3.2          | Types of calibration                                                          | 44       |
|     | B.2.1        | Amplitude calibration with analytical fields                                  | 44       |
|     | B.2.2        | Amplitude and phase calibration by transfer calibration                       | 45       |
|     | B.2.3        | Amplitude and phase calibration using numerical reference                     | 47       |
| Ann | ex C (       | informative) Field reconstruction techniques                                  | 49       |
| C   | C.1          | General                                                                       | 49       |
| C   | 0.2          | Objective of field reconstruction techniques                                  | 49       |
| C   | 2.3          | Background                                                                    | 49       |
| C   | 2.4          | Reconstruction techniques                                                     | 51       |
|     | C.4.1        | Expansion techniques.                                                         | 51       |
|     | C.4.2        | Source reconstruction techniquess.iteh.ai)                                    | 52       |
|     | C.4.3        | Source base function decomposition                                            | 52       |
|     | C.4.4        | Phase reconstruction                                                          | 52       |
| C   | 0.5          | Source reconstruction and SAR estimation from fields measured outside the     |          |
|     |              | phantom                                                                       | 53       |
| C   | 0.6          | Additional considerations for field reconstruction in scanning systems        | 53       |
| Ann | ex D (       | normative) SAR measurement system verification and system validation          | 54       |
| D   | D.1          | Objectives and purpose                                                        | 54       |
|     | D.1.1        | General                                                                       | 54       |
|     | D.1.2        | Objectives and purpose of <i>system check</i>                                 | 54       |
|     | D.1.3        | Objectives of system validation                                               | 54       |
| D   | 0.2          | SAR measurement setup and procedure for <i>system check</i> and <i>system</i> |          |
|     |              | Validation                                                                    | 55       |
|     | D.Z.I        |                                                                               | 55       |
|     | D.Z.Z        | Power measurement setups                                                      | 55       |
|     | D.Z.3        | Procedure to measure and normalize SAR                                        | 5/       |
| Г   | U.Z.4        | System shock                                                                  | 59<br>61 |
| L   | י.ט<br>1 2 ח | System check antonnas and test conditions                                     | 01<br>61 |
|     | D.3.1        | System check antennas and test conditions for scanning systems                | 01<br>61 |
|     | D.3.2        | System check antennas and test conditions for array systems                   | 01<br>61 |
|     | D.3.3        | System check acceptance criteria                                              | וט<br>רא |
| Г   | 0.3.4<br>\/  | System validation                                                             | 20       |
| L   | ד.י<br>1 ⊿ ח | Validation of array systems and scanning systems                              | 02<br>62 |
|     | D.4.1        | Requirements for system validation antennas and test conditions               | 20<br>62 |
|     | D.4.2        | Requirements for array systems and scanning systems                           | 20<br>62 |
|     |              | Test positions for system validation                                          | ۲0<br>61 |
|     |              | System validation procedure based on peak spatial overage SAP                 | 04<br>71 |
|     | D.4.0        | Source and a second procedure based on peak spatial-average OAN               | / 1      |

| 540         |                                                                             | 70                      |
|-------------|-----------------------------------------------------------------------------|-------------------------|
| D.4.6       | On-site system validation after installation                                |                         |
| D.4.7       | System validation acceptance criteria                                       | 80                      |
| Annex E (II | nformative) Interlaboratory comparisons                                     | 82                      |
| E.1 I       | <sup>o</sup> urpose                                                         | 82                      |
| E.2 I       | Monitor laboratory                                                          | 82                      |
| E.3 I       | Phantom set-up                                                              | 82                      |
| E.4 F       | Reference devices                                                           | 82                      |
| E.5 I       | Power set-up                                                                | 83                      |
| E.6 I       | nterlaboratory comparison – Procedure                                       | 83                      |
| Annex F (n  | ormative) System validation antennas                                        | 84                      |
| F.1 (       | General requirements                                                        | 84                      |
| F.2 I       | Return loss requirements                                                    | 84                      |
| F.3 S       | Standard dipole antenna                                                     | 85                      |
| F.4         | /PIFA                                                                       | 88                      |
| F.5 2       | 2-PEAK CPIFA                                                                | 90                      |
| F.6 /       | Additional antennas                                                         | 94                      |
| Annex G (r  | normative) SAR calibration of reference antennas                            | 95                      |
| G 1 1       |                                                                             | 95                      |
| G2 1        | Darameters or quantities and ranges to be determined by calibration method  | 06                      |
| G.2 I       | Parameters of quantities and ranges to be determined by calibration method. | 90                      |
| G.3 I       | Peterence antenna calibration setup PREVIEW                                 | 90                      |
|             | Verification of refurt torned and a itale ai)                               | 97                      |
| G.4.1       | Collibration of references enternances atom by story proceedings            | 97                      |
| G.4.2       | Calibration of reference antennas: step-by-step procedure                   | 97                      |
| G.4.3       | Uncertainty budget o <u>Breterence amennalca</u> libration                  | 98                      |
| G.5 I       | antennas of the same type using the array system 21                         | 102                     |
| Annex H (i  | nformative) General considerations on uncertainty estimation                | 105                     |
| H.1 (       | Concept of uncertainty estimation                                           | 105                     |
| H.2         | Type A and Type B evaluations                                               | 106                     |
| H.3 [       | Degrees of freedom and coverage factor                                      | 106                     |
| H.4 (       | Combined and expanded uncertainties                                         | 107                     |
| H.5 /       | Analvtical reference functions                                              | 108                     |
| Annex I (no | ormative) Evaluation of measurement uncertainty of SAR results from         |                         |
| scann       | ing vector measurement-based systems with single probes                     | 111                     |
| I.1 I       | Measurement uncertainties to be evaluated by the system manufacturer MM     | 111                     |
| I.1.1       | General                                                                     | 111                     |
| I.1.2       | Calibration CF                                                              | 111                     |
| I.1.3       | Isotropy ISO                                                                | 111                     |
| 1.1.4       | System linearity <i>LIN</i>                                                 | 112                     |
| I.1.5       | Sensitivity limit SL                                                        | 112                     |
| I.1.6       | Boundary effect <i>BE</i>                                                   | 112                     |
| 1.1.7       | Readout electronics <i>RE</i>                                               |                         |
| 118         | Response time RT                                                            | 113                     |
| 119         | Probe positioning <i>PP</i>                                                 | 113                     |
| 1 10        | Sampling error SE                                                           | 113                     |
| 1 11        | Phantom shell <i>PS</i>                                                     | 11 <u>/</u>             |
| 1 12        | Tissue-equivalent medium parameters $MAT$                                   | + ۱۱،۰۰۰<br>۱1 <i>۸</i> |
| 1.1.12      | Measurement system immunity/secondary recention MSI                         | 116                     |
| 1.1.13      | Modeurement system minunity/secondary reception Mor                         | 110                     |

| 1.2                            | Uncertainty of reconstruction corrections and post-processing to be spec                                                                                                                                                                                                                                     | ified             |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 101                            |                                                                                                                                                                                                                                                                                                              | 110               |
| 1.2.1                          | Evoluation of uncertainty due to reconstruction <i>BEC</i>                                                                                                                                                                                                                                                   |                   |
| 1.2.2                          | Evaluation of uncertainty due to reconstruction $REC$                                                                                                                                                                                                                                                        | 110               |
| 1.2.3                          |                                                                                                                                                                                                                                                                                                              |                   |
| 1.2.4                          | SAR averaging SAV                                                                                                                                                                                                                                                                                            |                   |
| 1.2.3                          | SAR scaling SARS                                                                                                                                                                                                                                                                                             |                   |
| 1.2.0                          | SAR correction for deviations in permittivity and conductivity sc                                                                                                                                                                                                                                            |                   |
| 1.3                            |                                                                                                                                                                                                                                                                                                              |                   |
| 1.3.1                          |                                                                                                                                                                                                                                                                                                              |                   |
| 1.3.2                          | Probe coupling with the DUT PC                                                                                                                                                                                                                                                                               |                   |
| 1.3.3                          |                                                                                                                                                                                                                                                                                                              |                   |
| 1.3.4                          |                                                                                                                                                                                                                                                                                                              |                   |
| 1.3.5                          | Measured SAR drift SD                                                                                                                                                                                                                                                                                        |                   |
| 1.4                            |                                                                                                                                                                                                                                                                                                              |                   |
| 1.4.1                          |                                                                                                                                                                                                                                                                                                              |                   |
| 1.4.2                          | Device holder DH                                                                                                                                                                                                                                                                                             |                   |
| 1.4.3                          | Device positioning <i>DP</i>                                                                                                                                                                                                                                                                                 |                   |
| 1.4.4                          | RF ambient conditions <i>AC</i>                                                                                                                                                                                                                                                                              |                   |
| 1.4.5                          | Measurement system drift and noise <i>DN</i>                                                                                                                                                                                                                                                                 | 121               |
| 1.5                            | Uncertainties of validation antennas MVR                                                                                                                                                                                                                                                                     | 122               |
| I.5.1                          | General                                                                                                                                                                                                                                                                                                      | 122               |
| 1.5.2                          | Deviation of experimental antennas DEX 1.41,                                                                                                                                                                                                                                                                 | 122               |
| 1.5.3                          | Power measurement uncertainty <i>PMU</i>                                                                                                                                                                                                                                                                     | 122               |
| 1.5.4                          | Other uncertainty contributions when using validation antennas OVS<br>https://standards.iteh.av/catalog/standards/sist/lfec/cf4-bc26-4f06-bbf3-                                                                                                                                                              |                   |
| Annex J (<br>or sc             | normative) Evaluation of the measurement system uncertainty of fixed ar<br>anning array vector measurement-based systems                                                                                                                                                                                     | ray<br>123        |
| J.1                            | Measuring system uncertainties to be evaluated by the manufacturer MM                                                                                                                                                                                                                                        | 1                 |
| J.1.1                          | General                                                                                                                                                                                                                                                                                                      | 123               |
| J.1.2                          | Calibration CF                                                                                                                                                                                                                                                                                               | 123               |
| J.1.3                          | lsotropy ISO                                                                                                                                                                                                                                                                                                 | 123               |
| J.1.4                          | Mutual sensor coupling <i>MSC</i>                                                                                                                                                                                                                                                                            | 124               |
| J.1.5                          | Scattering due to the presence of the array AS                                                                                                                                                                                                                                                               |                   |
| J.1.6                          | System linearity <i>LIN</i>                                                                                                                                                                                                                                                                                  |                   |
| J.1.7                          | Sensitivity limit <i>SL</i>                                                                                                                                                                                                                                                                                  |                   |
| J.1.8                          | Boundary effect <i>BE</i>                                                                                                                                                                                                                                                                                    |                   |
| J.1.9                          | Readout electronics <i>RE</i>                                                                                                                                                                                                                                                                                |                   |
| J.1.1                          | 0 Response time <i>RT</i>                                                                                                                                                                                                                                                                                    |                   |
| J.1.1                          | 1 Probe position <i>PP</i>                                                                                                                                                                                                                                                                                   |                   |
| J.1.1                          | 2 Sampling error <i>SE</i>                                                                                                                                                                                                                                                                                   |                   |
| J.1.1                          | 3 Array boundaries <i>AB</i>                                                                                                                                                                                                                                                                                 |                   |
| J.1.1                          | 4 Phantom shell <i>PS</i>                                                                                                                                                                                                                                                                                    | 129               |
| J.1.1                          |                                                                                                                                                                                                                                                                                                              |                   |
|                                | 5 Tissue-equivalent medium parameters <i>MAT</i>                                                                                                                                                                                                                                                             |                   |
| J.1.1                          | <ul> <li>5 Tissue-equivalent medium parameters <i>MAT</i></li> <li>6 Phantom homogeneity <i>HOM</i></li> </ul>                                                                                                                                                                                               |                   |
| J.1.1<br>J.1.1                 | <ul> <li>Tissue-equivalent medium parameters <i>MAT</i></li> <li>Phantom homogeneity <i>HOM</i></li> <li>Measurement system immunity/secondary reception <i>MSI</i></li> </ul>                                                                                                                               | 129<br>131<br>132 |
| J.1.1<br>J.1.1<br>J.2          | <ul> <li>Tissue-equivalent medium parameters <i>MAT</i></li> <li>Phantom homogeneity <i>HOM</i></li> <li>Measurement system immunity/secondary reception <i>MSI</i></li> <li>Uncertainty of reconstruction, corrections, and post-processing to be specified by the manufacturer <i>MN</i></li> </ul>        |                   |
| J.1.1<br>J.1.1<br>J.2          | <ul> <li>Tissue-equivalent medium parameters <i>MAT</i></li> <li>Phantom homogeneity <i>HOM</i></li> <li>Measurement system immunity/secondary reception <i>MSI</i></li> <li>Uncertainty of reconstruction, corrections, and post-processing to be specified by the manufacturer <i>MN</i></li></ul>         |                   |
| J.1.1<br>J.1.1<br>J.2<br>J.2.1 | <ul> <li>5 Tissue-equivalent medium parameters <i>MAT</i></li> <li>6 Phantom homogeneity <i>HOM</i></li> <li>7 Measurement system immunity/secondary reception <i>MSI</i></li> <li>9 Uncertainty of reconstruction, corrections, and post-processing to be specified by the manufacturer <i>MN</i></li></ul> |                   |

| J.2.3                                 | Impact of noise on reconstruction POL                                                                                                                                                          | 132 |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| J.2.4                                 | SAR averaging SAV                                                                                                                                                                              | 132 |
| J.2.5                                 | SAR scaling <i>SARS</i>                                                                                                                                                                        | 132 |
| J.2.6                                 | SAR correction for deviations in permittivity and conductivity SC                                                                                                                              | 132 |
| J.3                                   | Measurement system uncertainties that are dependent on the DUT MD                                                                                                                              | 132 |
| J.3.1                                 | General                                                                                                                                                                                        | 132 |
| J.3.2                                 | Probe or probe-array coupling with the DUT <i>PC</i>                                                                                                                                           | 132 |
| J.3.3                                 | Modulation response <i>MOD</i>                                                                                                                                                                 | 133 |
| J.3.4                                 | Integration time IT                                                                                                                                                                            | 133 |
| J.3.5                                 | Measurement system drift and noise <i>DN</i>                                                                                                                                                   | 133 |
| J.4                                   | Uncertainties related to the source or noise ME                                                                                                                                                | 133 |
| J.4.1                                 | General                                                                                                                                                                                        | 133 |
| J.4.2                                 | Device holder DH                                                                                                                                                                               | 133 |
| J.4.3                                 | Device positioning DP                                                                                                                                                                          | 133 |
| J.4.4                                 | RF ambient conditions AC                                                                                                                                                                       | 134 |
| J.4.5                                 | Measurement system drift and noise <i>DN</i>                                                                                                                                                   | 134 |
| J.5                                   | Uncertainties of validation antennas MV                                                                                                                                                        | 134 |
| J.5.1                                 | General                                                                                                                                                                                        | 134 |
| J.5.2                                 | Deviation of experimental antennas <i>DEX</i>                                                                                                                                                  | 134 |
| J.5.3                                 | Power measurement uncertainty PMU                                                                                                                                                              | 134 |
| J.5.4                                 | Other uncertainty contributions when using validation antennas OVS                                                                                                                             | 134 |
| Bibliograp                            | <sup>hy</sup> (standards.iteh.ai)                                                                                                                                                              | 135 |
| Figure 1 –                            | Evaluation plan checklist SIST.EN-IEC 62209+3:2021                                                                                                                                             | 15  |
| Figure 2 –<br>surface of              | Illustration of the shape and orientation relative to a curved phantom the distorted cubic volume for computing psSAR2021                                                                      | 22  |
| Figure 3 –<br>measurem<br>performed   | Measurements performed by shifting a large device over the efficient<br>ent area of the system including overlapping areas – in this case: six tests                                           | 24  |
| Figure 4 –<br>frequencie<br>frequency | Flow chart for SAR measurements of uncorrelated signals at different<br>s using a measurement system able to distinguish between different<br>components (Method 2)                            | 27  |
| Figure 5 –                            | Illustration of the amplitude spectrum, as function of frequency, for                                                                                                                          |     |
| simultane                             | busly transmitted signals of multiple frequency bands emitted by a DUT                                                                                                                         | 28  |
| Figure 6 –<br>measurem                | Illustration of a completely covered signal bandwidth $B_s$ by the nent system analysis bandwidth $B_a$ at single transmission mode                                                            | 29  |
| Figure 7 –<br>the measu<br>transmissi | Illustration of a completely covered signal bandwidths $B_{si}$ (for $i = 2$ to $N$ ) by rement system analysis bandwidth $B_a$ for simultaneous multiple-frequency on mode                    | 29  |
| Figure 8 –<br>the measu<br>transmissi | Illustration of a non-coverage of the signal bandwidths $B_{Si}$ (for $i = 2$ to $N$ ) by rement system analysis bandwidth $B_a$ for simultaneous multiple-frequency on mode.                  | 29  |
| Figure 9 –<br>by the me<br>frequency  | Illustration of a partial-coverage of the signal bandwidths $B_{si}$ (for $i = 2$ to $N$ ) asurement system analysis bandwidth $B_a$ for simultaneous multiple-transmission mode               | 30  |
| Figure 10<br>to cover o<br>frequency  | – Illustration of reduction of the measurement system analysis bandwidth $B_a$ nly one signal bandwidth $B_{Si}$ (for $i = 1$ to $N$ ) for simultaneous multiple-transmission mode             | 30  |
| Figure 11<br>bandwidth<br>simultaneo  | – Illustration of increasing or moving the measurement system analysis $B_a$ to cover one or more signal bandwidth $B_{si}$ (for $i = 1$ to $N$ ) for bus multiple-frequency transmission mode | 30  |

|--|

| Figure A.1 – Sagittally-bisected phantom with extended perimeter, used for scanning measurement systems                                                                                                 | 41  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure A.2 – Dimensions of the elliptical phantom                                                                                                                                                       | 42  |
| Figure C.1 – Coordinate system for 2D planar measurement-system                                                                                                                                         | 50  |
| Figure C.2 – Generic configuration of SAR measurement system                                                                                                                                            | 50  |
| Figure C.3 – Schematic representation of 2D planar measurement-based SAR system and its coordinate system                                                                                               | 52  |
| Figure C.4 – Source reconstruction from fields outside a phantom                                                                                                                                        | 53  |
| Figure D.1 – Recommended power measurement setup for <i>system check</i> and <i>system validation</i>                                                                                                   | 56  |
| Figure D.2 – Equipment setup for measurement of forward power $P_{f}$ and forward coupled power $P_{fC}$                                                                                                | 57  |
| Figure D.3 – Equipment setup for measuring the shorted reverse coupled power $P_{\text{rcs}}$                                                                                                           | 58  |
| Figure D.4 – Equipment setup for measuring the power with the reference antenna connected                                                                                                               | 58  |
| Figure D.5 – Port numbering for the <i>S</i> -parameter measurements of the directional coupler                                                                                                         | 60  |
| Figure D.6 – SAM masks for positioning dipole antennas and VPIFAs on the head phantoms, including holes where the antenna spacer is inserted                                                            | 65  |
| Figure D.7 – Flat masks for positioning VPIFAs on the flat phantoms, including a hole in the centre where the VPIFA spacer is inserted                                                                  | 66  |
| Figure D.8 – Dipole showing the distance of $s = 15 \text{ mm}$                                                                                                                                         | 67  |
| Figure D.9 – 2-PEAK CPIFA showing the fixed distance of $s = 7 \text{ mm}$                                                                                                                              | 67  |
| Figure D.10 – VPIFA positioned showing the fixed distance of s = 2 mm                                                                                                                                   | 68  |
| Figure D.11 – System check and the hidation locations to the the that phantom                                                                                                                           | 69  |
| Figure D.12 – System check and validation locations for the head phantom                                                                                                                                | 70  |
| Figure D.13 – Definition of rotation angles for dipoles                                                                                                                                                 | 71  |
| Figure F.1 – Mechanical details of the standard dipole                                                                                                                                                  | 87  |
| Figure F.2 – VPIFA validation antenna                                                                                                                                                                   | 89  |
| Figure F.3 – 2-PEAK CPIFA at 2 450 MHz                                                                                                                                                                  | 92  |
| Figure F.4 – Detail of the tuning structure and matching structure                                                                                                                                      | 93  |
| Figure G.1 – Measurement setup for waveguide calibration of dosimetric probe, and similar setup (same tissue-equivalent liquid, dielectric spacer, power sensors and sequence) for entering calibration | 05  |
| Figure C.2. Setup for calibration of a reference antenna                                                                                                                                                | 95  |
| Figure G.2 – Setup for calibration of a reference antenna<br>Figure G.3 – Method for the transfer of calibration between two antennas of the same                                                       | 102 |
| Figure 1.1 Illustration of SAP measurement results during 8 h and the control maying                                                                                                                    | 103 |
| average                                                                                                                                                                                                 | 122 |
| Table 1 – Evaluation plan checklist                                                                                                                                                                     | 16  |
| Table 2 – Uncertainty budget template for the evaluation of the measurement system uncertainty of the 1 g or 10 g psSAR to be carried out by the system manufacturer                                    | 36  |
| Table 3 – Uncertainty budget template for evaluating the uncertainty in the measured value of 1 g SAR or 10 g SAR from a DUT                                                                            | 37  |
| Table 4 – Uncertainty budget template for evaluating the uncertainty in the measured value of 1 g SAR or 10 g SAR from a validation antenna                                                             | 38  |

| Table 5 – Uncertainty budget template for evaluating the uncertainty in the measuredvalue of 1 g SAR or 10 g SAR from the system check                                                                                              | 39  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table A.1 – Dielectric properties of the tissue-equivalent medium                                                                                                                                                                   | 43  |
| Table B.1 – Uncertainty analysis for single-probe calibration in waveguide                                                                                                                                                          | 45  |
| Table B.2 – Uncertainty analysis for transfer calibration of array systems                                                                                                                                                          | 46  |
| Table B.3 – Uncertainty analysis of transfer calibration of array systems                                                                                                                                                           | 48  |
| Table D.1 – Example of power measurement uncertainty in %                                                                                                                                                                           | 60  |
| Table D.2 – Modulations and multiplexing modes used by radio systems                                                                                                                                                                | 64  |
| Table D.3 – Peak spatial-average SAR (psSAR) averaged over 1 g and 10 g values for the flat phantom filled with tissue-equivalent medium for the antennas specified in Annex F                                                      | 72  |
| Table D.4 – Peak spatial-average SAR (psSAR) averaged over 1 g and 10 g values for antenna generating two peaks on the flat phantom filled with tissue-equivalent medium for the antennas specified in Annex F                      | 73  |
| Table D.5 – Peak spatial-average SAR (psSAR) averaged over 1 g and 10 g values on the head left and right phantom for the antennas specified in Annex F                                                                             | 74  |
| Table D.6 – Peak spatial-average SAR (psSAR) averaged over 1 g and 10 g values for antenna generating two peaks on the head left and right phantom for the antennas specified in Annex F. Modulations are as specified in Table D.2 | 79  |
| Table D.7 – Set of randomised tests for on-site <i>system validation</i> using flat phantom 1 g and 10 g psSAR, normalized to 1 W forward power using the antennas specified in Annex F                                             | 79  |
| Table D.8 – Set of tests for on-site system validation using left and right head phantoms for 1 g and 10 g psSAR for the antennas specified in Annex F                                                                              | 80  |
| Table F.1 – Return loss values for antennas specified in Annex F and flat phantom filled with tissue-equivalent mediumai/catalog/standards/sist/1fec7cf4-bc26-4f06-bbf3                                                             | 85  |
| Table F.2 – Mechanical dimensions of the reference dipoles                                                                                                                                                                          | 86  |
| Table F.3 – Dimensions for VPIFA antennas at different frequencies                                                                                                                                                                  | 90  |
| Table F.4 – Dielectric properties of the dielectric layers for VPIFA antennas                                                                                                                                                       | 90  |
| Table F.5 – Thickness of substrates and planar metallization                                                                                                                                                                        | 93  |
| Table F.6 – Dielectric properties of FR4                                                                                                                                                                                            | 93  |
| Table F.7 – Values for the antenna dimensions in Figures F.4 and F.5                                                                                                                                                                | 94  |
| Table G.1 – Example uncertainty budget for reference dipole antenna calibration for1 g and 10 g averaged SAR (750 MHz to 3 GHz)                                                                                                     | 99  |
| Table G.2 – Example uncertainty budget for reference antenna calibration (PIFA) for 1 g and 10 g averaged SAR (750 MHz to 3 GHz)                                                                                                    | 100 |
| Table G.3 – Example uncertainty budget for reference antenna (dipole) calibration for1 g and 10 g averaged SAR (3 GHz to 6 GHz)                                                                                                     | 101 |
| Table G.4 – Example uncertainty budget for the calibration of an antenna using thetransfer method, as percentages                                                                                                                   | 104 |
| Table H.1 – Parameters of analytical reference functions and associated reference         peak 10 g SAR value                                                                                                                       | 109 |

IEC 62209-3:2019 © IEC 2019

### INTERNATIONAL ELECTROTECHNICAL COMMISSION

### MEASUREMENT PROCEDURE FOR THE ASSESSMENT OF SPECIFIC ABSORPTION RATE OF HUMAN EXPOSURE TO RADIO FREQUENCY FIELDS FROM HAND-HELD AND BODY-MOUNTED WIRELESS COMMUNICATION DEVICES –

#### Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz)

### FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and nongovernmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate.//IEC.cannot.bec.heldgresponsible.for.the way in which they are used or for any misinterpretation by any end user.
  Rt2f670db20/sist-en-iec-62209-3-2021
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62209-3 has been prepared by IEC technical committee 106: Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure.

The text of this International Standard is based on the following documents:

| FDIS         | Report on voting |
|--------------|------------------|
| 106/494/FDIS | 106/497/RVD      |

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.