SLOVENSKI STANDARD SIST EN ISO 11665-6:2020 01-april-2020 Nadomešča: SIST EN ISO 11665-6:2015 Merjenje radioaktivnosti v okolju - Zrak: radon Rn-222 - 6. del: Točkovna metoda za merjenje koncentracije aktivnosti (ISO 11665-6:2020) Measurement of radioactivity in the environment - Air: radon-222 - Part 6: Spot measurement methods of the activity concentration (ISO 11665-6:2020) Ermittlung der Radioaktivität in der Umwelt A Luft: Radon-222 - Teil 6: Punktmessverfahren für die Aktivitätskonzentration (ISO 11665-6:2020) (standards.iteh.ai) Mesurage de la radioactivité dans l'environnement - Air; radon 222 - Partie 6: Méthodes de mesure ponctuelle de l'activité volumique (ISO 11665-6:2020) - 0312- fc0c63a7ea6c/sist-en-iso-11665-6-2020 Ta slovenski standard je istoveten z: EN ISO 11665-6:2020 ICS: 13.040.01 Kakovost zraka na splošno Air quality in general 17.240 Merjenje sevanja Radiation measurements SIST EN ISO 11665-6:2020 en,fr,de **SIST EN ISO 11665-6:2020** ## iTeh STANDARD PREVIEW (standards.iteh.ai) SIST EN ISO 11665-6:2020 https://standards.iteh.ai/catalog/standards/sist/8b4cb31b-8209-440e-9312fc0c63a7ea6c/sist-en-iso-11665-6-2020 ## EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN ISO 11665-6 February 2020 ICS 17.240; 13.040.01 Supersedes EN ISO 11665-6:2015 ### **English Version** # Measurement of radioactivity in the environment - Air: radon-222 - Part 6: Spot measurement methods of the activity concentration (ISO 11665-6:2020) Mesurage de la radioactivité dans l'environnement -Air: radon 222 - Partie 6: Méthodes de mesure ponctuelle de l'activité volumique (ISO 11665-6:2020) Ermittlung der Radioaktivität in der Umwelt - Luft: Radon-222 - Teil 6: Punktmessverfahren für die Aktivitätskonzentration (ISO 11665-6:2020) This European Standard was approved by CEN on 21 January 2020. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels ### EN ISO 11665-6:2020 (E) | Contents | Page | |-------------------|------| | | 2 | | European foreword | 3 | # iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN ISO 11665-6:2020</u> https://standards.iteh.ai/catalog/standards/sist/8b4cb31b-8209-440e-9312-fc0c63a7ea6c/sist-en-iso-11665-6-2020 ## **European foreword** This document (EN ISO 11665-6:2020) has been prepared by Technical Committee ISO/TC 85 "Nuclear energy, nuclear technologies, and radiological protection" in collaboration with Technical Committee CEN/TC 430 "Nuclear energy, nuclear technologies, and radiological protection" the secretariat of which is held by AFNOR. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by August 2020, and conflicting national standards shall be withdrawn at the latest by August 2020. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights. This document supersedes EN ISO 11665-6:2015. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. ## (staEndorsement notice The text of ISO 11665-6:2020 has been approved by CEN as EN ISO 11665-6:2020 without any modification. fc0c63a7ea6c/sist-en-iso-11665-6-2020 **SIST EN ISO 11665-6:2020** ## iTeh STANDARD PREVIEW (standards.iteh.ai) SIST EN ISO 11665-6:2020 https://standards.iteh.ai/catalog/standards/sist/8b4cb31b-8209-440e-9312fc0c63a7ea6c/sist-en-iso-11665-6-2020 **SIST EN ISO 11665-6:2020** # INTERNATIONAL STANDARD ISO 11665-6 Second edition 2020-01 Measurement of radioactivity in the environment — Air: radon-222 — Part 6: Spot measurement methods of the activity concentration iTeh STMesurage de la radioactivité dans l'environnement — Air: radon 222 — Partie 6: Méthodes de mesure ponctuelle de l'activité volumique <u>SIST EN ISO 11665-6:2020</u> https://standards.iteh.ai/catalog/standards/sist/8b4cb31b-8209-440e-9312-fc0c63a7ea6c/sist-en-iso-11665-6-2020 Reference number ISO 11665-6:2020(E) ISO 11665-6:2020(E) # iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN ISO 11665-6:2020</u> https://standards.iteh.ai/catalog/standards/sist/8b4cb31b-8209-440e-9312-fc0c63a7ea6c/sist-en-iso-11665-6-2020 ### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2020 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org Published in Switzerland ii | Contents | | Page | |--------------|---|------| | Fore | eword | iv | | Intro | roduction | v | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms, definitions and symbols 3.1 Terms and definitions 3.2 Symbols | 1 | | 4 | Principle | 2 | | 5 | Equipment | 3 | | 6 | Sampling 6.1 Sampling objective 6.2 Sampling characteristics 6.3 Sampling conditions 6.3.1 General 6.3.2 Location of sampling place 6.3.3 Sampling duration 6.3.4 Volume of air sampled | | | 7 | Detection iTen STANDARD PREVIEW | 4 | | 8 | Measurement 8.1 Procedure (standards.iteh.ai) 8.2 Influence quantities 8.3 Calibration SISTEN ISO 11665-6:2020 | | | 9 | Expression of results ds. iteh. ai/catalog/standards/sist/8b4cb31b-8209-440e-9312-9.1 Radon activity concentration/sist-en-iso-11665-6-2020 9.2 Standard uncertainty 9.3 Decision threshold and detection limit 9.4 Limits of the confidence interval | | | 10 | Test report | 5 | | Ann | nex A (informative) Measurement method using scintillation cells | 7 | | Bibliography | | | ### ISO 11665-6:2020(E) #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. (standards.iteh.ai) This document was prepared by Technical Committee ISO/TC 85, *Nuclear energy, nuclear technologies, and radiological protection*, Subcommittee SC 27, *Radiological protection*. This second edition cancels and replaces the first edition (ISO 11665-6:2012), of which it constitutes a minor revision. The changes compared to the previous edition are as follows: - update of the Introduction; - update of the Bibliography. A list of all the parts in the ISO 11665 series can be found on the ISO website. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. ### Introduction Radon isotopes 222, 219 and 220 are radioactive gases produced by the disintegration of radium isotopes 226, 223 and 224, which are decay products of uranium-238, uranium-235 and thorium-232 respectively, and are all found in the earth's crust (see ISO 11665-1:2019, Annex A, for further information). Solid elements, also radioactive, followed by stable lead are produced by radon disintegration^[1]. When disintegrating, radon emits alpha particles and generates solid decay products, which are also radioactive (polonium, bismuth, lead, etc.). The potential effects on human health of radon lie in its solid decay products rather than the gas itself. Whether or not they are attached to atmospheric aerosols, radon decay products can be inhaled and deposited in the bronchopulmonary tree to varying depths according to their size^{[2][3][4][5]}. Radon is today considered to be the main source of human exposure to natural radiation. UNSCEAR^[6] suggests that, at the worldwide level, radon accounts for around 52 % of global average exposure to natural radiation. The radiological impact of isotope 222 (48 %) is far more significant than isotope 220 (4 %), while isotope 219 is considered negligible (see ISO 11665-1:2019, Annex A). For this reason, references to radon in this document refer only to radon-222. Radon activity concentration can vary from one to more orders of magnitude over time and space. Exposure to radon and its decay products varies tremendously from one area to another, as it depends on the amount of radon emitted by the soil and building materials, weather conditions, and on the degree of containment in the areas where individuals are exposed. As radon tends to concentrate in enclosed spaces like houses, the main part of the population exposure is due to indoor radon. Soil gas is recognized as the most important source of residential radon through infiltration pathways. Other sources are described in other parts of ISO 11665 and ISO 13164 series for water^[7]. Radon enters into buildings via diffusion mechanism caused by the all-time existing difference between radon activity concentrations in the underlying soil and inside the building, and via convection mechanism inconstantly generated by a difference in pressure between the air in the building and the air contained in the underlying soil. Indoor radon activity concentration depends on radon activity concentration in the underlying soil, the building structure, the equipment (chimney, ventilation systems, among others), the environmental parameters of the building (temperature, pressure, etc.) and the occupants' lifestyle. To limit the risk to individuals, a national reference level of 100 Bq·m⁻³ is recommended by the World Health Organization^[5]. Wherever this is not possible, this reference level should not exceed 300 Bq·m⁻³. This recommendation was endorsed by the European Community Member States that shall establish national reference levels for indoor radon activity concentrations. The reference levels for the annual average activity concentration in air shall not be higher than 300 Bq·m^{-3[5]}. To reduce the risk to the overall population, building codes should be implemented that require radon prevention measures in buildings under construction and radon mitigating measures in existing buildings. Radon measurements are needed because building codes alone cannot guarantee that radon concentrations are below the reference level. The activity concentration of radon-222 in the atmosphere can be measured by spot, continuous and integrated measurement methods with active or passive air sampling (see ISO 11665-1). This document deals with radon-222 spot measurement methods. NOTE The origin of radon-222 and its short-lived decay products in the atmospheric environment and other measurement methods are described generally in ISO 11665-1.