ISO/TC 34/SC 12
Secretariat: IRAM
Voting begins
on: 2015-10-15
Voting terminates on: 2015-12-15

Sensory analysis - Methodology Paired comparison test
 AMENDMENT 1

Analyse sensorielle - Méthodotogié- Essai de comparaison par paires
AMENDEMENT 1

Please see the administrative notes on page iii

Reference number

ISO/CEN PARALLEL PROCESSING

This final draft has been developed within the International Organization for Standardization (ISO), and processed under the ISO-lead mode of collaboration as defined in the Vienna Agreement. The final draft was established on the basis of comments received during a parallel enquiry on the draft.
This final draft is hereby submitted to the ISO member bodies and to the CEN member bodies for a parallel two-month approval vote in ISO and formal vote in CEN.

Positive votes shall not be accompanied by comments.
Negative votes shall be accompanied by the relevant technical reasons.

COPYRIGHT PROTECTED DOCUMENT
© ISO 2015, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Ch. de Blandonnet $8 \cdot$ CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41227490111
Fax +41227490947
copyright@iso.org
www.iso.org

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see wwwwiso.org/patents).

Any trade name used in this document is information given for theonvenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the followDI URE: Foreword - Supplementary information.

The committee responsible for this document iso SO MTC 34, Food products, Subcommittee SC 12, Sensory analysis.

Sensory analysis - Methodology — Paired comparison test AMENDMENT 1

Page 15, Annex B, B.5.2
Replace B.5.2 with the following:

B.5.2 Analysis and interpretation of results

In Example 1 (one-sided paired test), the data were as follows: $n=30, x=21, \alpha=0,05$. From these data, the analyst calculates

- $p_{c}=x / n=21 / 30=0,7$,
$-\hat{p}_{\mathrm{d}}$ (proportion of distinguishers) $=2 p_{\mathrm{c}}-1=2 \times 0,7-1=0,4$,
- $s_{\mathrm{d}}\left(\right.$ standard error of $\left.p_{\mathrm{d}}\right)=2 \sqrt{\left(n \times x-x^{2}\right) / n^{3}}=2 \sqrt{\left(30 \times 21-21^{2}\right) / 30^{3}}=0,167$, and
- 95% one-sided lower confidence limit $=p_{\mathrm{d}}-Z_{\alpha}^{2} s_{\mathrm{d}}=0,4-1,64 \times 0,167=0,125$.

The sensory analyst can therefore be 95% certain that the proportion of consumers who perceive the prototype to be crispier than the control is larger than the proportion of consumers who perceive the control to be crispier than the prototy pe by at least 12%. This result agrees with the conclusion given in Example 1, since it shows that the one-sided confidence interval does not contain the null value.

In Example 3 (two-sided paired difference test), the data were as follows: $n=44, x=32, \alpha=0,05$. It follows that

- $p_{c}=x / n=32 / 44=0,73$,
- \hat{p}_{d} (proportion of distinguishers) $=2 p_{\mathrm{c}}-1=2 \times 0,73-1=0,45$,
- $s_{\mathrm{d}}\left(\right.$ standard error of $\left.p_{\mathrm{d}}\right)=2 \sqrt{\left(n \times x-x^{2}\right) / n^{3}}=2 \sqrt{\left(44 \times 32-32^{2}\right) / 44^{3}}=0,134$,
- 95% upper confidence limit $=\hat{p}_{\mathrm{d}}+z_{\alpha / 2} s_{\mathrm{d}}=0,45+1,96 \times 0,134=0,71$, and

The sensory analyst can therefore be 95% certain that at least 19% and at most 71% of the population is capable of distinguishing the samples. This result concords with the conclusion given in Example 3, indicating sample A as being saltier, since it shows that the confidence interval does not contain the null value.

In Example 4 (two-sided paired similarity test), the data were as follows: $n=120, x=67, \beta=0,05$ and the critical $p_{\mathrm{d}}=30 \%$. In the two-sided case, the value of x is chosen to be the maximum of the two choice counts, regardless of which sample was chosen most often. The calculation therefore gives

- $p_{\mathrm{C}}=x / n=67 / 120=0,56$,
$-\hat{p}_{\mathrm{d}}$ (proportion of distinguishers) $=2 p_{\mathrm{c}}-1=2 \times 0,56-1=0,12$,
- $s_{\mathrm{d}}\left(\right.$ standard error of $\left.p_{\mathrm{d}}\right)=2 \sqrt{\left(n \times x-x^{2}\right) / n^{3}}=2 \sqrt{\left(120 \times 67-67^{2}\right) / 120^{3}}=0,09$, and
- 95% upper confidence limit $=\hat{p}_{\mathrm{d}}+z_{\beta / 2} S_{\mathrm{d}}=0,12+1,96 \times 0,09=0,29$.

The sensory analyst can therefore be 95% certain that the actual proportion of the population capable of distinguishing the samples is no greater than 29%. For the similarity test, the analyst chose the confidence level to be $100(1-\beta)=95 \%$. Since 29% is less than the pre-established limit (i.e. critical $p_{\mathrm{d}}=30 \%$), the analyst can conclude with 95% confidence that the samples are sufficiently similar in surface slip to be used interchangeably.

Since x was defined as the maximum choice count regardless of which sample received the higher count, only the upper-limit of the two-sided confidence interval needs to be calculated.

Price based on 2 pages
© ISO 2015 - All rights reserved

