Installation and equipment for liquefied natural gas — Design of floating LNG installations —

Part 1:
General requirements

Installations et équipements de gaz naturel liquéfié — Conception des installations flottantes de GNL —

Partie 1: Exigences générales
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction</td>
<td>viii</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms, definitions and abbreviated terms</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Terms and definitions</td>
<td>3</td>
</tr>
<tr>
<td>3.2 Abbreviated terms</td>
<td>8</td>
</tr>
<tr>
<td>4 Basis of design</td>
<td>11</td>
</tr>
<tr>
<td>4.1 Site and meteocean conditions</td>
<td>11</td>
</tr>
<tr>
<td>4.1.1 Site study</td>
<td>11</td>
</tr>
<tr>
<td>4.1.2 Earthquake</td>
<td>13</td>
</tr>
<tr>
<td>4.1.3 Location</td>
<td>13</td>
</tr>
<tr>
<td>4.1.4 Other studies</td>
<td>14</td>
</tr>
<tr>
<td>4.2 Design criteria</td>
<td>14</td>
</tr>
<tr>
<td>4.2.1 General</td>
<td>14</td>
</tr>
<tr>
<td>4.2.2 Topsides</td>
<td>15</td>
</tr>
<tr>
<td>4.2.3 Transfer systems</td>
<td>16</td>
</tr>
<tr>
<td>4.2.4 Hull</td>
<td>20</td>
</tr>
<tr>
<td>4.2.5 LNG storage</td>
<td>22</td>
</tr>
<tr>
<td>4.2.6 Mooring</td>
<td>23</td>
</tr>
<tr>
<td>4.2.7 Pipe-work</td>
<td>25</td>
</tr>
<tr>
<td>5 Health, safety and the environment</td>
<td>26</td>
</tr>
<tr>
<td>5.1 General</td>
<td>26</td>
</tr>
<tr>
<td>5.1.1 Main objectives</td>
<td>26</td>
</tr>
<tr>
<td>5.1.2 Main principles</td>
<td>26</td>
</tr>
<tr>
<td>5.2 Identification of safety and environmental barriers and design requirements</td>
<td>27</td>
</tr>
<tr>
<td>5.2.1 General</td>
<td>27</td>
</tr>
<tr>
<td>5.2.2 Purpose</td>
<td>27</td>
</tr>
<tr>
<td>5.2.3 Safety and environmental barriers</td>
<td>28</td>
</tr>
<tr>
<td>5.2.4 Generic barriers</td>
<td>28</td>
</tr>
<tr>
<td>5.2.5 Safety and environmental barriers identification process</td>
<td>29</td>
</tr>
<tr>
<td>5.2.6 Safety and environmental barriers design requirements</td>
<td>30</td>
</tr>
<tr>
<td>5.2.7 Safety and environmental barriers design requirements certification</td>
<td>30</td>
</tr>
<tr>
<td>5.3 Environmental considerations</td>
<td>31</td>
</tr>
<tr>
<td>5.3.1 General</td>
<td>31</td>
</tr>
<tr>
<td>5.3.2 Floating LNG installations specificities</td>
<td>31</td>
</tr>
<tr>
<td>5.3.3 Environmental aspects identification</td>
<td>31</td>
</tr>
<tr>
<td>5.3.4 Environmental design review</td>
<td>32</td>
</tr>
<tr>
<td>5.3.5 Environmental design requirements</td>
<td>32</td>
</tr>
<tr>
<td>5.4 Safety considerations</td>
<td>39</td>
</tr>
<tr>
<td>5.4.1 General</td>
<td>39</td>
</tr>
<tr>
<td>5.4.2 Safety strategies and philosophies</td>
<td>39</td>
</tr>
<tr>
<td>5.4.3 Safety reviews</td>
<td>40</td>
</tr>
<tr>
<td>5.4.4 Qualitative risk assessment, QRA and specific safety studies</td>
<td>42</td>
</tr>
<tr>
<td>5.4.5 Risk prevention measures (typical list)</td>
<td>46</td>
</tr>
<tr>
<td>5.4.6 Emergency response</td>
<td>59</td>
</tr>
<tr>
<td>5.5 Occupational health and industrial hygiene considerations</td>
<td>61</td>
</tr>
<tr>
<td>5.5.1 Occupational health and industrial hygiene aspects identification</td>
<td>61</td>
</tr>
<tr>
<td>5.5.2 Chemical exposure</td>
<td>61</td>
</tr>
<tr>
<td>5.5.3 Biological factor</td>
<td>62</td>
</tr>
<tr>
<td>5.5.4 Legionella</td>
<td>63</td>
</tr>
<tr>
<td>5.5.5 Thermal stress</td>
<td>63</td>
</tr>
</tbody>
</table>
6 Mooring and stationkeeping

6.1 General

6.2 Permanent stationkeeping in open waters

6.3 Permanent stationkeeping in nearshore or docked conditions

6.4 Mooring systems for special project design conditions

6.5 Short-duration mooring of a visiting LNGC for loading/unloading

6.6 Infrastructure design for jetty moorings

6.7 Transfer of material and personnel

7 Hull design

7.1 Hull structural design

7.2 Stability and watertight integrity

8 LNG storage
8.2 Sloshing loads
 8.2.1 Intermediate filling levels: Operating conditions of FSRU/FLNG 81
 8.2.2 Intermediate filling levels: Operating conditions of cargo transfers (STS) 82
8.3 Boil-off gas management
8.4 Rollover prevention management
 8.4.1 Background 83
 8.4.2 Detection and prevention 83
8.5 Vent systems for LNG storage
 8.5.1 General 84
 8.5.2 Pressure relief systems 84
 8.5.3 Vacuum relief systems 85
9 LNG transfer system
 9.1 Functional requirements 85
 9.2 Design of transfer systems
 9.2.1 Operating envelope 86
 9.2.2 Transfer system design 87
10 Boil-off gas handling and recovery
 10.1 General 89
 10.2 BOG collection system 89
 10.3 System of gas return to LNGC or to FLNG facility 90
 10.4 Boil-off gas recovery 90
 10.5 Gas compressor 90
 10.6 Flare/vent 91
11 Low temperature pipework
 11.1 General 91
 11.2 Piping components
 11.2.1 General 91
 11.3 Pipe
 11.3.1 General 91
 11.3.2 Pipe joints 92
 11.3.3 Pipe supports 92
 11.3.4 Compensation of contractions due to cold 92
 11.3.5 Differential displacement between offshore structures 92
 11.4 Valves
 11.4.1 Relief valves 92
 11.4.2 Control valves 94
 11.5 Thermal insulation
 11.5.1 General 94
 11.5.2 Piping insulation 94
 11.5.3 Fire behaviour 94
 11.5.4 Gas absorption 94
 11.5.5 Moisture resistance 95
 11.5.6 Differential movements 95
 11.5.7 Thickness determination 95
 11.6 Prevention of zinc contamination of austenitic steel 95
12 Utilities systems
 12.1 Classification of systems
 12.1.1 Essential services 96
 12.1.2 Emergency services 96
 12.2 Electrical
 12.2.1 Design and engineering principles 97
 12.2.2 Electrical system design 97
 12.2.3 Design and selection of equipment and cables 100
 12.3 Instrument air system 101
 12.4 Hydraulic systems 101
13 Process and safety control and monitoring systems
 13.1 General description 101
ISO 20257-1:2020(E)

14 Security management .. 106
14.1 General .. 106
14.2 Offshore access ... 106
14.3 Onshore access ... 106

15 Commissioning .. 107
15.1 General .. 107
15.2 Systemization and schedule .. 107
15.3 Implementation ... 107
15.4 Safety ... 108
15.5 Organization .. 109
15.6 Handover ... 109
15.7 Start-up and performance test ... 109

16 Inspection and maintenance ... 109
16.1 General .. 109
16.2 Specific requirements for floating LNG installations .. 110
 16.2.1 Cargo tank ... 110
 16.2.2 Mooring .. 110
 16.2.3 Process piping systems .. 110
 16.2.4 Transfer systems .. 110

17 Preservation and corrosion protection ... 110
17.1 Specific requirements for non-seagoing vessels ... 110
17.2 Painting and coating .. 110
17.3 Cathodic protection ... 111
17.4 Impact of use of seawater as heating medium and active fire protection 111

18 Preparation for operations .. 111

19 Specific requirements for conversion of existing installations to floating LNG installations 111

Annex A (informative) Risk-based analysis .. 113
Annex B (informative) Safety studies .. 117
Annex C (normative) Definition of reference flow rates for LNG boil-off calculations 124
Annex D (normative) Design basis and criteria of an LNG transfer system 128
Annex E (informative) Seismic classification .. 140
Annex F (informative) Assessment of novel technology ... 143
Annex G (informative) Environmental, occupational health and industrial hygiene aspects 146

Bibliography .. 151
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries, Subcommittee SC 9, Liquefied natural gas installations and equipment, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 282, Installation and equipment for LNG, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

A list of all parts in the ISO 20257 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
Introduction

This document provides a non-exhaustive list of potential concepts. When a novel concept is proposed, the general principles in this document can be applied as far as applicable. Such design will result in a concept with equivalent level of safety and environmental friendliness to those currently considered as standard solutions. Guidance on the assessment of novel technology is provided in Annex F.

In case a part of the installation, such as hull, vessel or structure, is already covered by another International Standard, including IMO, this document will only complement that applicable standard where necessary in order to ensure global safety, stability and integrity of the overall floating LNG installation.

This document assumes that a floating LNG installation is also designed to meet IMO and classification society requirements. It is not intended to preclude the use of a 'barge' solution. This document neither specifies the shape of the installation nor specifies the need for propulsion or an installation to fall within a particular regulatory regime. A barge can either be subject to exactly the same considerations as a unit designed as a non-propelled ship or not. This will depend on aspects such as whether a barge is located offshore or at shore, how it is transported, whether it stores LNG or not, the level of manning, the regulatory regime imposed on it. In this respect, the user of this document is expected to take hull structure design, means of external communications, and evacuation, escape and rescue arrangements, etc. into consideration.

Additional requirements by the Flag process, Shelf or Coastal Regulations can be applicable, that will vary depending on the type of floating LNG installation.

LNG as fuel bunkering applications is covered in ISO 20519 and in publications by the Society for Gas as a Marine Fuel.
Installation and equipment for liquefied natural gas — Design of floating LNG installations —

Part 1: General requirements

1 Scope

This document provides requirements and guidance for the design and operation of floating liquefied natural gas (LNG) installations, including installations for the liquefaction, storage, vaporisation, transfer and handling of LNG, in order to have a safe and environmentally acceptable design and operation of floating LNG installations.

This document is applicable to:

— floating LNG liquefaction installations (plant) — FLNG;
— floating LNG regasification installations (plant) — FSRU;
— floating storage units — FSU.

This document is applicable to offshore, near-shore or docked floating LNG installations.

This document includes any jetty in the scope in case of docked floating LNG installations with regards to the mooring. This document briefly describes floating LNG mooring concepts.

This document is applicable to both newbuilt and converted floating LNG installations, and addresses specific requirements.

This document is not applicable to:

— onshore LNG storage, liquefaction and/or regasification installations/plants, except for docked FSRU and/or FLNG installations;
— offshore LNG plants based on non-floating structure (such as gravity based structure [GBS] principle); and
— support onshore based facilities (such as support vessels, tugs, etc.).

This document is not intended for design floating power generation facilities though relevant parts of this document can be used.

This document is not intended to cover LNG as fuel bunkering applications.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 834 (all parts), Fire resistance tests — Elements of building construction

ISO 1460, Metallic coatings — Hot dip galvanized coatings on ferrous materials — Gravimetric determination of the mass per unit area
ISO 1461, *Hot dip galvanized coatings on fabricated iron and steel articles — Specifications and test methods*

ISO 4126 (all parts), *Safety devices for protection against excessive pressure*

ISO 9606 (all parts), *Qualification testing of welders — Fusion welding*

ISO 9712, *Non-destructive testing — Qualification and certification of NDT personnel*

ISO 10497, *Testing of valves — Fire type-testing requirements*

ISO 12944 (all parts), *Paints and varnishes — Corrosion protection of steel structures by protective paint systems*

ISO 16903, *Petroleum and natural gas industries — Characteristics of LNG, influencing the design, and material selection*

ISO 16904, *Petroleum and natural gas industries — Design and testing of LNG marine transfer arms for conventional onshore terminals*

ISO 19900, *Petroleum and natural gas industries — General requirements for offshore structures*

ISO 19901-1, *Petroleum and natural gas industries — Specific requirements for offshore structures — Part 1: Metocean design and operating considerations*

ISO 19901-7, *Petroleum and natural gas industries — Specific requirements for offshore structures — Part 7: Stationkeeping systems for floating offshore structures and mobile offshore units*

ISO 20088 (all parts), *Determination of the resistance to cryogenic spill of insulation materials*

ISO 22899 (all parts), *Determination of the resistance to jet fires of passive fire protection*

ISO 23251, *Petroleum, petrochemical and natural gas industries — Pressure-relieving and depressuring systems*

ISO 24409-1, *Ships and marine technology — Design, location and use of shipboard safety signs, fire control plan signs, safety notices and safety markings — Part 1: Design principles*

ISO 28460, *Petroleum and natural gas industries — Installation and equipment for liquefied natural gas — Ship-to-shore interface and port operations*

IEC 60079 (all parts), *Explosive atmospheres*

IEC 60092-502, *Electrical installations in ships — Part 502: Tankers — Special features*

IEC 60331 (all parts), *Tests for electric cables under fire conditions — Circuit integrity*

IEC 61511 (all parts), *Functional safety — Safety instrumented systems for the process industry sector*

IEC 61892 (all parts), *Mobile and fixed offshore units — Electrical installations*

IEC 62305 (all parts), *Protection against lightning*

ISO/IEC 80079 (all parts), *Explosive atmospheres*

API RP 17B, *Recommended Practice for Flexible Pipe*

CAA CAP 437, *Standards for Offshore Helicopter Landing Areas*
3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp

3.1.1 floating LNG installation

installation typically comprising of hull structure, gas processing, vaporization and liquefaction, LNG storage, hydrocarbon transfer (3.1.53), mooring systems, and other systems

Note 1 to entry: The hull structure is also known as hull.

Note 2 to entry: The gas processing, vaporization and liquefaction, including flare, are also known as topsides. Topsides are not relevant for floating storage units applications.

Note 3 to entry: The LNG storage is also known cargo containment systems and cargo handling systems.

Note 4 to entry: The hydrocarbon transfer is also known as cargo transfer systems, including offloading equipment and systems (if applicable).

Note 5 to entry: Mooring systems include jetties and fendering (if applicable).

Note 6 to entry: Examples of other systems are utilities and accommodation.
3.1.2 floating storage and regasification unit
FSRU
floating unit for storage and regasification of LNG (3.1.31) for sending out to natural gas grid

Note 1 to entry: An FSRU is intended to be permanently or temporarily moored or anchored as part of an LNG installation located in a protected harbour, in a near-shore location (protected or unprotected) or offshore.

3.1.3 floating liquefied natural gas unit
FLNG
floating unit for production, liquefaction, storage and transfer (3.1.53) of LNG (3.1.31)

Note 1 to entry: An FLNG unit can receive gas either from offshore fields, onshore fields, onshore pipeline or other facilities (other platforms, associated gas, etc.). An FLNG units has the ability to process and export gas-field related hydrocarbon products, such as liquefied petroleum gas and condensate.

3.1.4 floating storage unit
FSU
floating unit for storage of LNG (3.1.31) and permanently or temporarily moored as part of an LNG installation

Note 1 to entry: Non-modified LNG carriers might be considered as suitable, provided that the following aspects are appraised and resulting safety level is found acceptable:
— mooring arrangement;
— transfer system;
— sloshing aspects;
— effects from/on other part of LNG installation;
— long term use inspectability.

3.1.5 accident
mean uncontrolled event that can entail the loss of human life, personal injuries, environmental damage or the loss of assets and financial interests

3.1.6 barge
box shaped non-propelled floating structure

3.1.7 boiling liquid expanding vapour explosion
violent explosive vaporization following the rupture of a pressurized tank containing liquid well above its boiling point at atmospheric pressure, which can be followed by a ball fire if the vapour cloud is ignited

3.1.8 boil-off gas
gas generated during the storage or handling of volatile liquefied gases

3.1.9 boundary
property line on land or water inside over which the operator (3.1.38)/owner (3.1.39) has full control and authority, or exclusive use

3.1.10 braid
layer, or layers, of cylindrically woven wires covering the hose (3.1.25) and attached to the flexible hose assembly (3.1.26) end fittings, serving the function of restraining the flexible hose against elongation
3.1.11 classification society
non-governmental organization, which establishes and maintains technical standards for the construction and operation of ships and offshore structures, validates that the construction conforms to these standards, and carries out regular surveys in service to ensure continued conformance with the standards

3.1.12 condensate
hydrocarbon liquids (liquid state at standard conditions) produced from primary separation of natural gas (3.1.35) from a reservoir

3.1.13 drip tray
spill containment for minor leakage

3.1.14 emergency release system
ERS
system that provides a positive means of quick release of the transfer system (3.1.54) and safe isolation of receiving source from the supply source

3.1.15 emergency shutdown
ESD
system that safely and effectively stops the whole plant or individual units to minimize incident escalation

3.1.16 enclosed area
enclosed space
space within which, in the absence of artificial ventilation, the ventilation will be limited and any explosive atmosphere will not be dispersed naturally

3.1.17 explosion
deflagration event of uncontrolled combustion

3.1.18 flammable gas
gas or vapour which, when mixed with air in certain proportions, forms a combustible gas mixture

3.1.19 flag administration
maritime authority of a country in which a vessel is registered

3.1.20 green water
sea water reaching the deck of the vessel in harsh conditions

3.1.21 harm
physical injury or damage to the health of people, or damage to assets or the environment

3.1.22 hazard
potential source of harm (3.1.21)