

SLOVENSKI STANDARD SIST-TS CEN/TS 17688-2:2022

01-februar-2022

Molekularne diagnostične preiskave in vitro - Specifikacije za predpreiskovalne procese pri aspiraciji s tanko iglo (FNA) - 2. del: Izolirani proteini

Molecular in vitro diagnostic examinations - Specifications for pre-examination processes for Fine Needle Aspirates (FNAs) - Part 2: Isolated proteins

Molekularanalytische in vitro diagnostische Verfahren - Spezifikationen für präanalytische Prozesse für Feinnadelaspirate - Teil 2: Isolierte Proteine

Analyses moléculaires de diagnostic in vitro Spécifications pour les processus préanalytiques pour les ponctions à l'aiguille fine - Partie 2 : Protéines extradites

SIST-TS CEN/TS 17688-2:2022 Ta slovenski standard je istoveten z:ai/cataCEN/TS 17688-2:202100-

98d3-487b-b2ba-0442a7d9d616/sist-ts-cen-ts-17688-2-

2022

ICS:

11.100.10 Diagnostični preskusni sistemi in vitro

In vitro diagnostic test systems

SIST-TS CEN/TS 17688-2:2022

en,fr,de

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST-TS CEN/TS 17688-2:2022</u> https://standards.iteh.ai/catalog/standards/sist/56874e00-98d3-487b-b2ba-0442a7d9d616/sist-ts-cen-ts-17688-2-2022

SIST-TS CEN/TS 17688-2:2022

TECHNICAL SPECIFICATION SPÉCIFICATION TECHNIQUE TECHNISCHE SPEZIFIKATION

CEN/TS 17688-2

December 2021

ICS 11.100.10

English Version

Molecular in vitro diagnostic examinations - Specifications for pre-examination processes for Fine Needle Aspirates (FNAs) - Part 2: Isolated proteins

Analyses moléculaires de diagnostic in vitro -Spécifications pour les processus préanalytiques pour les ponctions à l'aiguille fine - Partie 2 : Protéines extradites Molekularanalytische in-vitro-diagnostische Verfahren - Spezifikationen für präanalytische Prozesse für Feinnadelaspirate - Teil 2: Isolierte Proteine

This Technical Specification (CEN/TS) was approved by CEN on 15 November 2021 for provisional application.

The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN will be requested to submit their comments, particularly on the question whether the CEN/TS can be converted into a European Standard.

CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in parallel to the CEN/TS) until the final decision about the possible conversion of the CEN/TS into an EN is reached.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

https://standards.iteh.ai/catalog/standards/sist/56874e00-98d3-487b-b2ba-0442a7d9d616/sist-ts-cen-ts-17688-2-2022

cen

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

Ref. No. CEN/TS 17688-2:2021 E

CEN/TS 17688-2:2021 (E)

Contents

European foreword		
Introduction		4
1	Scope	5
2	Normative references	5
3	Terms and definitions	5
4	General considerations	11
5	Outside the laboratory	
5.1	Specimen collection	
5.1.1	General	
5.1.2	Information about the specimen donor/patient	
5.1.3	Information about the specimen	13
5.1.4	Selection of the primary FNA collection device	
5.1.5	FNA specimen collection and processing from the donor/patient	13
5.2	Specimen storage and transport	15
6	Inside the laboratory	15
6 .1	Inside the laboratory	15
6.2	Specimen/sample storage after transport and reception	15
6.2.1	General	15
6.2.1 6.2.2	Storage of FNA specimen/samples using collection devices with stabilizer	
6.2.2	Storage of FNA specimen/samples using collection devices with stabilizers	
6.3	Specimen/samples using conection devices without stabilizers	
6.3.1		
6.3.2	General https://standards.iteh.ai/catalog/standards/sist/56874e00-	10
6.3.3	Handling of cell suspension	10
0.3.3 6.3.4	Preparation of cell suspension slides	10
6.4	Evaluation of the pathology of the specimen or sample(s)	. 19
6.5	Processed sample storage, transport and reception	
6.5.1	General	
6.5.2	Storage and transport of cell suspension	
6.5.3	Storage and transport of paraffin-embedded cell blocks	
6.5.4	Storage and transport of cell suspension slides	
6.6	Isolation of protein	
6.6.1	General	
6.6.2	Using a commercial protein isolation kit intended for diagnostic use	
6.6.3	Using the laboratory's own protein isolation procedure	
6.6.4	Isolation of proteins from specific sample types	
6.7	Quantity and quality assessment of isolated proteins	
6.8	Storage of isolated proteins	23
Bibliography25		25

European foreword

This document (CEN/TS 17688-2:2021) has been prepared by Technical Committee CEN/TC 140 "In vitro diagnostic medical devices", the secretariat of which is held by DIN.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national standards body. A complete listing of these bodies can be found on the CEN website.

According to the CEN/CENELEC Internal Regulations, the national standards organisations of the following countries are bound to announce this Technical Specification: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST-TS CEN/TS 17688-2:2022 https://standards.iteh.ai/catalog/standards/sist/56874e00-98d3-487b-b2ba-0442a7d9d616/sist-ts-cen-ts-17688-2-2022

CEN/TS 17688-2:2021 (E)

Introduction

Molecular *in vitro* diagnostics has enabled significant progress in medicine. Further progress is expected by new technologies analysing profiles of nucleic acids, proteins, and metabolites in human tissues and body fluids. However, the profiles of these molecules can change drastically during the pre-examination process, including the specimen collection, transport, storage and processing.

Examination of proteins is commonly used in clinical practice. This includes e.g. prognostic and predictive biomarker examinations. This is a fast growing field in molecular diagnostics.

Fine needle aspiration is a non-surgical procedure that uses a thin, hollow-bore needle and syringe to collect a specimen from patients for cytopathological and molecular investigation. As a minimallyinvasive technique, fine needle aspirates (FNAs) are commonly used to diagnose and monitor for example a range of cancer types, e.g. breast, lung and thyroid cancer, and other diseases, such as inflammatory diseases. FNAs also provide the opportunity to sample metastatic sites (e.g. lymph nodes) and otherwise non-resectable tissues.

Besides cytological assessment, molecular biological analysis of FNAs is expected to become increasingly used for cancer and other disease diagnostics, including companion diagnostics.

One of the challenges facing molecular analysis of FNA samples is their small size and diversity in composition (cells, blood, body fluid). The low cellular content of FNAs means that the yield of isolated proteins is typically towards the lower end of detection for molecular examination. Therefore, the protein isolation procedure should provide a sufficient amount of protein as required by the specific examination.

Protein profiles, protein integrities, and protein-protein interactions in FNAs can change drastically during and after collection (due to, e.g. gene induction, gene down regulation, protein degradation and modification). Protein species amounts can change differently in different donors'/patients' FNAs.

Therefore, standardization of the entire process from specimen collection to protein examination is needed to minimize protein degradation and protein profile changes during and after FNA collection. This document describes special measures which need to be taken to obtain good quality FNA specimens/samples and isolated protein therefrom for molecular examination.

98d3-487b-b2ba-0442a7d9d616/sist-ts-cen-ts-17688-2-In this document, the following verbal forms are used: 2022

- "shall" indicates a requirement;
- "should" indicates a recommendation;
- "may" indicates a permission;
- "can" indicates a possibility or a capability.

1 Scope

This document gives guidelines on the handling, documentation, storage and processing of fine needle aspirates (FNAs) intended for protein examination during the pre-examination phase before a molecular examination is performed.

This document is applicable to molecular *in vitro* diagnostic examinations including laboratory developed tests performed by medical laboratories and molecular pathology laboratories that examine proteins isolated from FNAs. It is also intended to be used by laboratory customers, *in vitro* diagnostics developers and manufacturers, biobanks, institutions and commercial organisations performing biomedical research, and regulatory authorities.

Different dedicated measures are taken for collecting, stabilizing, transporting and storing of core needle biopsies (FNA Biopsy or FNA B) and are not covered in this document, but in EN ISO 20184-2, *Molecular in vitro diagnostic examinations — Specifications for pre-examination processes for frozen tissue — Part 2: Isolated proteins* and EN ISO 20166-2, *Molecular in vitro diagnostic examinations — Specifications for pre-examination processes for formalin fixed and paraffin-embedded (FFPE) tissue — Part 2: Isolated proteins.*

This document is not applicable for protein examination by immunohistochemistry.

NOTE International, national or regional regulations or requirements can also apply to specific topics covered in this document.

2 Normative references **Central STANDARD**

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN ISO 15189, Medical laboratories - Requirements for quality and competence (ISO 15189)

3 Terms and definitions

https://standards.iteh.ai/catalog/standards/sist/56874e00-

For the purposes of this document, the terms and definitions given 8 in EN ISO 15189:2012 and the following apply. 2022

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>
- IEC Electropedia: available at https://www.electropedia.org/

3.1

aliquot

portion of a larger amount of homogenous material, assumed to be taken with negligible sampling error

Note 1 to entry: The term is usually applied to fluids. Tissues are heterogeneous and therefore cannot be aliquoted.

Note 2 to entry: The definition is derived from the Compendium of Chemical Terminology Gold Book. International Union of Pure and Applied Chemistry. Version 2.3.3., 2014; the PAC, 1990,62,1193 (Nomenclature for sampling in analytical chemistry (Recommendations 1990)) p. 1206; and the PAC 1990, 62, 2167 (Glossary of atmospheric chemistry terms (Recommendations 1990)) p. 2173.

CEN/TS 17688-2:2021 (E)

3.2

ambient temperature

unregulated temperature of the surrounding air

[SOURCE: EN ISO 20166-1:2018, 3.2]

3.3

analyte

component represented in the name of a measurable quantity

[SOURCE: ISO 17511:2020, 3.2, modified — Deleted example.]

3.4

biomolecule

organic molecule produced by living organisms that is involved in the maintenance and metabolic processes of organisms

Note 1 to entry: Examples of organic molecules are protein, carbohydrate, lipid, or nucleic acid.

3.5

cell block

paraffin-embedded cell clot

3.6

cell clot

cell-rich liquid specimen/sample concentrated into a compact cell aggregate for subsequent processing

iTeh STANDARD

PREVIEW

3.7

cytocentrifugation

cytology method that is specifically designed to concentrate cells on a slide by centrifugation

3.8

98d3-487b-b2ba-0442a7d9d616/sist-ts-cen-ts-17688-2-2022

deoxyribonucleic acid

DNA

polymer of deoxyribonucleotides occurring in a double-stranded (dsDNA) or single-stranded (ssDNA) form

[SOURCE: EN ISO 22174:2005, 3.1.2]

3.9

diagnosis

identification of a disease from its signs and symptoms, where the diagnostic process can involve examinations and tests for classification of an individual's condition into separate and distinct categories or subclasses that allow medical decisions about treatment and prognosis to be made

[SOURCE: EN ISO 20166-1:2018, 3.7]

3.10 examination analytical test

set of operations with the objective of determining the value or characteristics of a property

Processes that start with the *in situ* detection using antibodies, nucleic acid probes or dyes and Note 1 to entry: include all kinds of parameter testing or chemical manipulation for quantitative or qualitative examination.

[SOURCE: EN ISO 15189:2012, 3.7, modified — Notes to entry 1 to 3 have been removed. Note 1 to entry has been added and "analytical test" has been added as a preferred term.]

3.11

examination manufacturer

analytical test manufacturer

entity that manufactures and/or produces a specific analytical test

3.12

examination performance analytical test performance analytical performance

accuracy, precision, and sensitivity of a test to measure the analyte of interest

Other test performance characteristics such as robustness, repeatability can apply as well. Note 1 to entry:

[SOURCE: EN ISO 20184-1:2018, 3.4] PREVIEW

3.13

fixative solution used to preserve or harden FNA specimens for microscopic and molecular examination

(standards.iteh.ai)

https://standards.iteh.ai/catalog/standards/sist/56874e00-3.14

98d3-487b-b2ba-0442a7d9d616/sist-ts-cen-ts-17688-2formalin

saturated aqueous formaldehyde solution which at 100% contains 37% formaldehyde by mass (corresponding to 40 % by volume)

[SOURCE: EN ISO 20166-1:2018, 3.11]

3.15 fine needle aspirate FNA

specimen withdrawn by a non-operative procedure that uses a thin, hollow-bore needle

3.16

FNA primary collection device

thin, hollow-bore needle or syringe used for collecting the FNA specimen from the donor/patient

3.17

FNA secondary collection device

suitable container into which the specimen is transferred from the FNA primary collection device

SIST-TS CEN/TS 17688-2:2022

CEN/TS 17688-2:2021 (E)

3.18

homogeneous

uniform in structure and composition

[SOURCE: EN ISO 20166-1:2018, 3.31]

3.19

laboratory developed procedure

modified commercially available *in vitro* diagnostic device or fully in house developed procedure

3.20

nonconformity

nonfulfillment of a requirement

[SOURCE: EN ISO 9000:2015, 3.6.9]

3.21

paraffin embedding

process in which a sample is placed in paraffin to generate a hard surrounding matrix so that thin microscopic sections can be cut

3.22

pre-examination process pre-analytical workflow pre-analytical phase pre-examination phase

iTeh STANDARD PREVIEW

process that starts, in chronological order, from the clinician's request and includes the examination request, preparation and identification of the patient, collection of the primary sample(s), transportation to and within the analytical laboratory, isolation of analytes and ends when the analytical examination begins

https://standards.iteh.ai/catalog/standards/sist/56874e00-

Note 1 to entry: The pre-examination phase includes preparative processes that influence the outcome of the intended examination.

[SOURCE: EN ISO 15189:2012, 3.15, modified — An additional term was added and more detail was included.]

3.23

primary sample

specimen

discrete portion of a body fluid, breath, hair or tissue taken for examination, study or analysis of one or more quantities or properties assumed to apply for the whole

[SOURCE: EN ISO 15189:2012, 3.16, modified — The term and definition is used here without the original Notes.]

3.24

proficiency test

evaluation of participant performance against pre-established criteria by means of inter-laboratory comparisons

[SOURCE: EN ISO/IEC 17043:2010, 3.7, modified — Term and definition are used here without the original Notes.]

3.25

protein

type of biological macromolecules composed of one or more chains with a defined sequence of amino acids connected through peptide bonds

3.26

protein profile

amounts of the individual protein molecules that are present in a sample and that can be measured in the absence of any losses, inhibition and interference

3.27

protein species

amounts of a chemically clearly-defined protein corresponding to one spot on a high-performance twodimensional gel electrophoresis pattern

[SOURCE: [16]]

3.28

post translational modifications PTM

chemical alterations to a primary protein structure, often crucial for conferring biological activity on a protein

PREVIEW

(standards.iteh.ai)

2022

[SOURCE: [17]]

3.29

ribonucleic acid RNA

polymer of ribonucleotides occurring in a double-stranded or single-stranded form

[SOURCE: EN ISO 22174;2005, 3.1.3] 98d3-487b-b2ba-0442a7d9d616/sist-ts-cen-ts-17688-2-

3.30 room temperature temperature in the range of 18 °C to 25 °C

Note 1 to entry: Local or national regulations can have different definitions.

[SOURCE: EN ISO 20166-1:2018, 3.22]

3.31

sample one or more parts taken from a specimen

[SOURCE: EN ISO 15189:2012, 3.24, modified — Example has been removed.]

3.32

stability

ability of a sample material, when stored under specified conditions, to maintain a stated property value within specified limits for a specified period of time

[SOURCE ISO Guide 30:2015, 2.1.15, modified — The words "reference material" were replaced by "sample material".]