International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEX CHAPOCHAR OPPAHUSALUUR TO CTAH DAPTUSALUNOORGANISATION INTERNATIONALE DE NORMALISATION

Vibration and shock — Isolators — Procedure for specifying characteristics

Vibrations et chocs — Isolateurs — Dispositions pour la spécification des caractéristiques

Second edition – 1982-11-15eh STANDARD PREVIEW (standards.iteh.ai)

ISO 2017:1982 https://standards.iteh.ai/catalog/standards/sist/ebd2cb26-e213-44fa-becd-28f274d7a56f/iso-2017-1982

Descriptors : vibration, vibration isolators, resilient devices, specifications.

Ref. No. ISO 2017-1982 (E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 2017 was developed by Technical Committee ISO/TC 108, Mechanical vibration and shock. (standards.iteh.ai)

This second edition was submitted directly to the ISO Council, in accordance with clause 5.10.1 of part 1 of the Directives for the technical work of ISO. It cancels and replaces the first edition (i.e. ISO 2017 1972), which had been approved by the 213-44fa-becd-member bodies of the following countries : 28f274d7a56f/iso-2017-1982

Australia Belgium Brazil Czechoslovakia Denmark Egypt, Arab Rep. of France Germany, F.R. Greece Israel Japan Netherlands New Zealand Norway South Africa, Rep. of Spain

Sweden Switzerland Thailand United Kingdom USA USSR

No member body had expressed disapproval of the document.

Vibration and shock — Isolators — Procedure for specifying characteristics

0 Introduction

This International Standard is limited to consideration of resilient devices.

Some manufacturers of shock and vibration isolators (resilient mounts) have experience covering a wide variety of applications. The manufacturers, in most instances, are willing to use their background information for solving the users' isolation problems. However, it is frequently difficult for the manufacturer to provide this service, because the user has not furnished sufficient information to the manufacturer regarding the application.

On the other hand, the user is sometimes handicapped in applying isolators properly because sufficient technical information is not furnished by the manufacturer. Consequently, the user must conduct his own experimental evaluation of isolators and may unknowingly duplicate work already carried out by the017:1 manufacturer. The user must acquire proficiency in the art of dards applying resilient isolators, and needs appropriate technical info formation from the manufacturer. In some circumstances, the vibration or shock can be reduced at the source. This will be considered in other International Standards.

This International Standard is intended to serve as guide for the exchange of technical information between the user and supplier of resilient devices, as required for their proper application.

For the purposes of this International Standard, a resilient device is defined as a flexible element or system used between an equipment item and its supporting structure to attenuate the transmission of shock or vibration from the equipment to the structure or from the structure to the equipment.

1 Scope and field of application

This International Standard specifies the subject matter and format for describing isolators (resilient mounts), the equipment to be isolated, supporting structure and environment so that there will be a clear understanding by both the user and the manufacturer. Since the intention of this International Standard is to encourage better communication between the manufacturer and the user, it is strongly recommended that its provisions be adhered to unless there are good reasons for departing from them.

2 Reference

ISO 2041, Vibration and shock – Vocabulary.

3 Definitions

For the purpose of this International Standard, the following definitions apply in addition to the definitions given in ISO 2041.

3.1 isolation system : Items or support arrangements that secure an equipment to its supporting structure, and provide protection from shock and/or vibration.

NOTE — The characteristics of the system are influenced by the supported and supporting structures.

3.2 load range : Range of operation limited by the maximum and minimum continuous loads at which ans isolator can perform its intended function.

3.3 static stiffness: Ratio of change in force to change in displacement under slowly applied increasing and decreasing loads. This information is normally presented in the form of a load-deflection curve.

 $\ensuremath{\mathsf{NOTE}}$ — The static stiffness may be dependent upon temperature, rate of change of load on other conditions.

4 Specifications

4.1 Information supplied by the user

For the selection of a design of an isolation system, the following information, as applicable, is necessary:

4.1.1 General description of the isolation problem

A brief description of the information required for a complete understanding of the technical details of the proposed system shall be provided. This information shall include:

a) the type of equipment to be isolated;

b) the type of structure in which the equipment is to be mounted (ship, steel building, concrete building, power plant, etc.);

c) the location in the structure (engine room, main deck, roof, etc.);

d) the isolation efficiency - user's criteria for acceptance.

4.1.2 Data on item or items to be mounted

4.1.2.1 Allowable vibration and shock

The allowable vibration and shock that the equipment can withstand without malfunction and/or the level of vibration and shock generated by this equipment shall be specified if known, otherwise it must be estimated; in this case, a description of the exciting source must be given.

4.1.2.2 Equipment drawing

A drawing shall be furnished giving:

- a) the outline and installation of the equipment;
- b) the overall dimensions;

c) the location of the centre of gravity; the method of obtaining the centre of gravity shall be given i.e. estimate. calculation, or test);

d) specifications of bolt sizes and special connectors, for securing the equipment; locations of attachments, tapped holes, tolerances and any special material considerations shall be indicated on the drawing;

e) identification of the three mutually perpendicular axes with origin at the centre of gravity of the unit to be isolated under conditions of preferred orientation; orientation of the axes with respect to the equipment shall be given by dimensions; ISO

f) the normal equipment orientation with respect to the 56 fiso-2017-1982 vertical. The direction of major shock or vibration shall be indicated. Special or unusual orientations, such as changes in attitude, shall be indicated. Feasible structural attachment points shall be given. These points frequently determine the isolation system in relation to attitude, centre of gravity, etc.

4.1.2.3 Isolator load characteristics

a) The maximum and minimum weights1) (expressed in newtons) under operating conditions of the equipment shall be given.

b) The maximum permissible weight¹⁾ of the isolator shall be indicated, where applicable.

c) The method of obtaining the total weight¹⁾ shall be indicated (i.e. estimate, calculation, or test).

4.1.2.4 Moments of inertia and products of inertia

The moments of inertia and the products of inertia about the three axes defined in 4.1.2.2 and the method of obtaining the moments and products shall be given (i.e. estimate, calculation, or test). Inertia effects of attachments such as piping, cables, or attached accessories shall be included.

4.1.2.5 Natural frequencies

The natural requencies and/or resonance frequencies of major or fragile parts of the equipment and any known information on the primary resonant modes of the equipment shall be given.

4.1.2.6 Equipment description

A statement shall be made describing the equipment. Fragile parts, extremely heavy parts, special tubes, etc., shall be called to the attention of the isolator manufacturer.

4.1.2.7 Special requirements

Special features peculiar to the equipment shall be covered in the equipment description and by drawings. Among such special features are:

a) electrical connectors, tubing, or piping which might modify the mechanical response of the mounting system (type, size, stiffness. etc. shall be indicated);

b) externally applied forces and moments;

required access areas;

S.iteh.all clearance required for cooling air flow; any temperature gradients which might adversely affect isolator 2017:1980 peration shall be shown on the drawing, and the probable https://standards.iteh.ai/catalog/standards/sitemperature.cange4givenecd-

e) maximum clearance between equipment and foundation, where applicable;

f) applicable stress data.

4.1.2.8 Electrical features

Provisions for grounding and applicable specifications shall be indicated on the drawing, by an attached note.

4.1.2.9 Special requirements for mechanical stability

Special requirements shall be given. For example, special care is needed where equipment with a high or variable centre of gravity is supported by isolators located below the centre of gravity, or where uncompensated side thrusts exist.

4.1.3 Data on supporting structure

4.1.3.1 Nature of the supporting structure

A description of the supporting structure, and a general description, shall be given both from static and dynamic points of view.

¹⁾ The indication of "weight" is usable for normal earth applications. In the case of zero-gravity or other special applications, the indication of "mass" may be preferable.

4.2 Information supplied by the manufacturer

applicable to ensure proper use of the isolators:

4.2.1 Physical data

a) overall dimensions;

1) minimum load,

overload,

4) zero load;

maximum load,

4.2.1.1 Drawing

for

The manufacturer shall supply the following information as

A drawing shall be furnished by the manufacturer showing the

location and size of mounting holes and studs;

c) loading displacements including installation clearance

following characteristics of his isolator as applicable:

4.1.3.2 Space envelope

The preferred space envelope showing the available space for displacement of the isolated equipment shall be shown by a drawing. Allowable forces at points of attachment, of cables, piping, etc., where applicable, shall be given.

4.1.4 Environmental data

All available detailed information concerning the vibration and shock environment and/or applicable test specification shall be given. For example, it would be sufficient if the user could supply complete and accurate data on the vibration at the point of attachment. In case such complete information cannot be supplied, the user shall indicate the source of excitation, such as: reciprocating engines, turbines and compressors, motors and generators, ship's propeller, etc.

4.1.4.1 Vibration

The vibration shall be described by the frequency and, with respect to the three axes of 4.1.2.2 e) above, by the amplitude (displacement, velocity, acceleration or force), or, for random vibrations, in terms of power spectral density, bandwidth or other descriptive parameters, and the duration over which this will occur.

4.1.4.2 Shock

(standards.iteh.al) e) weight¹⁾ of isolator;

2)

3)

The shock shall be described in terms of a shock spectrum or 017:1982 shock pulse shape including peak value, duration, and whether repetitive. 28f274d7a56f/iso-2017g]⁹⁸² recommended load range (minimum, maximum);

4.1.4.3 Constant accelerations

The magnitude and direction of any constant accelerations shall be given together with the duration. Special considerations such as zero-gravity shall be included.

4.1.4.4 Climatic environment

The user shall supply, as applicable, the following information on the climatic environment during transportation, storage and use:

- a) the upper and lower temperature limits;
- b) altitude;

c) humidity, presence of sand and dust, salt spray, ozone, oils, solvents, radiation, etc,

4.1.4.5 Supplementary information

The user shall supply, as applicable, supplementary information concerning transportation, storage, and use.

h) levelling features;

i) recommended arrangement position in typical installations.

4.2.1.2 Special features

The manufacturer shall be describe special features of the isolators. The following shall be included:

- a) snubbers (auxiliary devices or alternative designs);
- b) dampers (auxiliary devices or alternative designs);
- c) recommended blocking for transport;

d) recommended field of use: aircraft, satellites, shipboard, cross-country vehicles, machine tools, building, etc.;

e) special adaptations (designed to meet certain requirements such as extreme temperatures, nuclear radiation, corrosive fluids, sound isolation features, etc.).

¹⁾ See footnote, page 2.

4.2.1.3 Designation

The manufacturer shall describe his method of designating and specifying his isolators, (i.e. annotate any system used for model, type, and part numbers).

4.2.2 Performance data

4.2.2.1 Static stiffness

The manufacturer shall describe the translational and rotational static stiffness characteristics of his isolators in three principal directions as applicable. The environmental conditions and the rate of loading under which the load-deflection data were obtained shall be described and tolerance limits given. (See also 4.2.3.)

4.2.2.2 Dynamic behaviour

The manufacturer shall describe the translational and rotational dynamic behaviour of his isolator in terms of dynamic stiffness. However, where necessary, as an alternative, the manufacturer may describe dynamic behaviour by transmissibility characteristics measured in a testing system which is fully described. Dynamic behaviour may be related to variations in the following input parameters: b) creep (permanent deformation) data, where applicable, and how obtained;

c) maximum and minimum temperature for storage and use.

4.2.2.5 Shock and impact

The manufacturer shall indicate shock capabilities in terms of available shock deflections and shock transmission characteristics if applicable, and state how data were obtained.

4.2.2.6 Special performance

The manufacturer shall point out any special features or purposes embodied in specific types of isolators (for example, state if designed specially for: minimum noise, transmission, shock attenuation, high temperature applications, constant acceleration, high natural frequency, etc.).

4.2.3 Environmental data

The manufacturer shall supply the following information on his isolators as applicable to ensure proper use:

i l'eh a) the upper and lower temperature limits beyond or below which the isolator under rated loads will not properly a) frequency (frequency range); (standards) perform its function or will undergo permanent changes in characteristics; NOTE - For shock, the rate of load application or removal. ISO 2017:198 b) the ability of the isolator to withstand corrosion or b) amplitude; https://standards.iteh.ai/catalog/standards/ deterioration caused by such factors as humidity, salt spray, 28f274d7a56f/iso-2 ageing, fungus, ozone, oils and fuels, corrosive vapours, C) load; sunshine, nuclear radiation, etc.; d) temperature.

4.2.2.3 Damping

The manufacturer shall describe the damping characteristics of his isolators in three principal directions, indicating applicable frequencies.

4.2.2.4 Durability

The manufacturer shall present such information on durability as:

a) endurance limit associated with repeated deflections and shocks;

c) the ability to perform under adverse conditions, for example, in an atmosphere loaded with sand and dust;

d) the ability to perform at altitude;

e) ageing effects due to storage in specified environments;

f) recommended storage environment.

4.2.4 Maintenance data

Manufacturer shall supply details of any maintenance, periodical inspection and service requirements.

iTeh This page intentionally left blankEVIEW (standards.iteh.ai)

ISO 2017:1982 https://standards.iteh.ai/catalog/standards/sist/ebd2cb26-e213-44fa-becd-28f274d7a56f/iso-2017-1982

iTeh This page intentionally left blankEVIEW (standards.iteh.ai)

ISO 2017:1982 https://standards.iteh.ai/catalog/standards/sist/ebd2cb26-e213-44fa-becd-28f274d7a56f/iso-2017-1982