INTERNATIONAL STANDARD

ISO 6626-3

Second edition 2019-09

Internal combustion engines — Piston rings —

Part 3: Coil-spring-loaded oil control rings made of steel

iTeh STMoteurs à combustion interne — Segments de piston —

Partie 3: Segments racleurs régulateurs d'huile, en acier, mis en charge par ressort hélicoidal

ISO 6626-3:2019 https://standards.iteh.ai/catalog/standards/sist/784097ba-a65c-4d7b-b7da-a49bd028912d/iso-6626-3-2019

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6626-3:2019 https://standards.iteh.ai/catalog/standards/sist/784097ba-a65c-4d7b-b7da-a49bd028912d/iso-6626-3-2019

COPYRIGHT PROTECTED DOCUMENT

© ISO 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Co	ntents		Page
Fore	word		iv
Intr	oduction		v
1	Scope		1
2	-	ative references	
3		, definitions and symbols	
J	3.1	Symbols	1
4	Piston	ring types and designation examples	2
	4.1	Type SOR — Steel oil control rings with R-shaped groove	2
		4.1.1 General features and dimensions	
		4.1.2 Designation	
	4.2	Type SOV — Steel oil control rings with V-shaped groove	
		4.2.1 General features and dimensions	
		4.2.2 Designation	
5		on features	
	5.1	Ring width h_1 and radial wall thickness a_1	
	5.2	Land width h_5	
	5.3 5.4	Land angle α , β	
	5.5		
	5.6	Slot sizes : STANDARD PREVIEW Nitrided surface	6
	5.7		
	5.8	PVD coating thickness of peripheral surface Nominal contact pressure and tangential force	7
		5.8.1 Nominal contact pressure	7
		5.8.2 Actual tangential force, F_{ν} and tolerance	8
		5.8.2 Actual tangential force, F_{ν} and tolerance. 5.8.3 Normalized tangential force, F_{ν} 84097ba-a65c-4d7b-b7da-Tolerance of tangential force F_{ν} 2 diso-662b-3-2019	8
	5.9		
6	_	orings	
	6.1	Types of coil spring	
	6.2	Coil-spring excursion (extended gap)	
	6.3 6.4	Position of coil spring gap and fixing	
_	_		
7		SOR	
8		SOV	
9	Dimen	nsions	12
Bibl	iography	,	26

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 34, *Propulsion, powertrain and powertrain fluids*. ISO 6626-3:2019

https://standards.itch.ai/catalog/standards/sist/784097ba-a65c-4d7b-b7da-

This second edition cancels and replaces the first edition (ISO 6266-3:2008), which has been technically revised. The main changes compared to the previous edition are as follows:

- added subclause 5.8.2, Actual tangential force, F_t and tolerance;
- added subclause 5.8.3, Normalized tangential force, F_N ;
- added Table 9, Normalized tangential forces, F_N ;
- raised table numbers by one from Table 9 onward;
- made editorial changes to Table 16.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

ISO 6626 (all parts) is one of a series of International Standards dealing with piston rings for reciprocating internal combustion engines. Others are ISO 6621 (all parts), ISO 6622 (all parts), ISO 6623, ISO 6624 (all parts), ISO 6625 and ISO 6627 (see <u>Clause 2</u> and Bibliography).

The common features and dimensional tables presented in this document constitute a broad range of variables and, in selecting a particular ring type, the designer will bear in mind the conditions under which it will be required to operate.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6626-3:2019 https://standards.iteh.ai/catalog/standards/sist/784097ba-a65c-4d7b-b7da-a49bd028912d/iso-6626-3-2019

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6626-3:2019 https://standards.iteh.ai/catalog/standards/sist/784097ba-a65c-4d7b-b7da-a49bd028912d/iso-6626-3-2019

Internal combustion engines — Piston rings —

Part 3:

Coil-spring-loaded oil control rings made of steel

1 Scope

This document specifies the essential dimensions of coil-spring-loaded oil control rings made of steel, of piston ring types SOR (with R-shaped groove) and SOV (with V-shaped groove).

This document applies to coil-spring-loaded oil control rings made of steel with a diameter from 60 mm up to and including 160 mm for reciprocating internal combustion engines. It can also be used for piston rings in compressors working under analogous conditions.

2 Normative references

There are no normative references in this document.

3 Terms, definitions and symbols ARD PREVIEW

No terms and definitions are listed in this document. teh.ai)

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- https://standards.iteh.ai/catalog/standards/sist/784097ba-a65c-4d7b-b7da-ISO Online browsing platform: ayailable at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

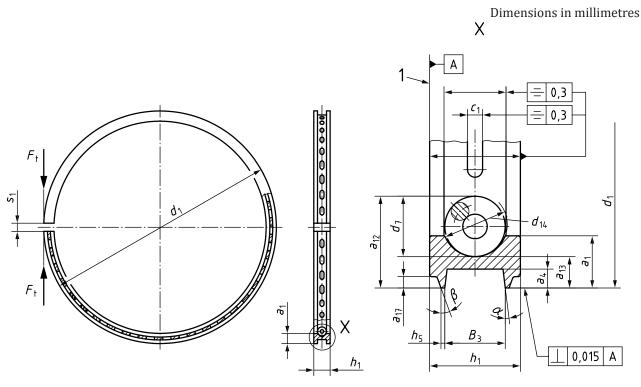
3.1 Symbols

- a_1 radial wall thickness
- a_4 groove depth
- a_{12} radial thickness over coil spring
- a_{13} groove depth and bridge
- a_{17} external land depth
- B_3 land spacing
- c_1 slot width
- d_1 nominal diameter (nominal bore diameter)
- d_7 coil-spring diameter
- d_{14} coil-spring groove diameter for type SOR
- f_1 coil-spring excursion
- F_{t} tangential force

ISO 6626-3:2019(E)

- h_1 ring width
- h_5 land width
- p_0 contact pressure
- s_1 closed gap
- w_1 slot length
- w_3 slot spacing
- α land angle inside
- β land angle outside
- θ groove angle for type SOV

NOTE These symbols (including associated indices) are in accordance with the symbols used in ISO 6621 (all parts), ISO 6622 (all parts), ISO 6623, ISO 6624 (all parts), ISO 6625, ISO 6627 and other parts of the ISO 6626 series.


4 Piston ring types and designation examples

4.1 Type SOR — Steel oil control rings with R-shaped groove/

4.1.1 General features and dimensions and ards.iteh.ai)

Figure 1 shows the general features and dimensions of piston ring type SOR.

https://standards.iteh.ai/catalog/standards/sist/784097ba-a65c-4d7b-b7da-a49bd028912d/iso-6626-3-2019

iTeh STANDARD PREVIEW

1 reference plane

NOTE 1 For definitions of symbols, set ause ards.iteh.ai)

NOTE 2 For dimensions, see $\underline{\text{Tables 1}}$, 2, 3, 4, 5, $\underline{\text{11}}$, $\underline{\text{12}}$, $\underline{\text{14}}$, $\underline{\text{15}}$, $\underline{\text{16}}$, $\underline{\text{17}}$, $\underline{\text{18}}$ and $\underline{\text{19}}$.

ISO 6626-3:2019

Figure 1 — General features and dimensions of piston ring type SOR

4.1.2 Designation

EXAMPLE A coil-spring-loaded oil control ring with R-shaped groove (SOR), a radial wall thickness class = small (S), of nominal diameter d_1 = 100 mm (100), a nominal ring width h_1 = 3 mm (3), a land width h_5 = 0,20 mm (0,20), made of steel MC65 (MC65), a nitrided depth of 0,030 mm min. (NT030), coil spring with reduced heat set (WF), and variable pitch with coil diameter d_7 ground (CSE), medium nominal contact pressure p_0 = 1,5 MPa (PN1,5):

Piston ring ISO 6626-3 SOR-S - 100 × 3 × 0,20 - MC65/NT030 WF CSE PN1,5

4.2 Type SOV — Steel oil control rings with V-shaped groove

4.2.1 General features and dimensions

Figure 2 shows the general features and dimensions of piston ring type SOV.

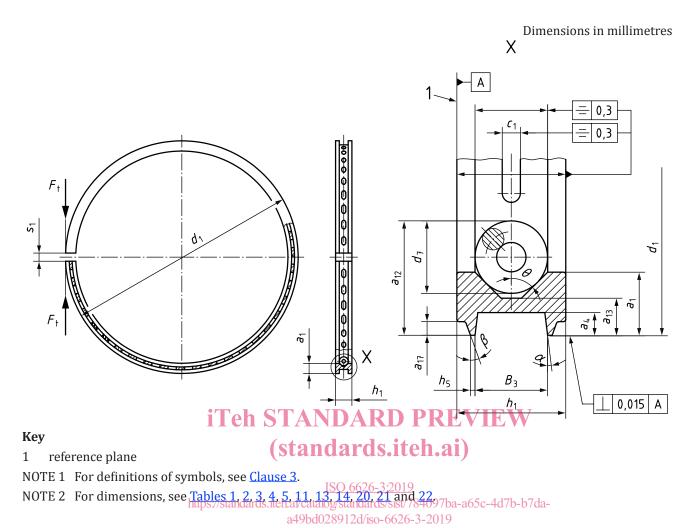


Figure 2 — General features and dimensions of piston ring type SOV

4.2.2 Designation

EXAMPLE A coil-spring-loaded oil control ring with V-shaped groove (SOV), a radial wall thickness class = small (S), V-shaped groove angle 40° (V40), of nominal diameter d_1 = 100 mm (100), a nominal ring width h_1 = 3 mm (3), a land width h_5 = 0.20 mm (0.20), made of steel MC65 (MC65), a nitrided depth of 0.030 mm min. (NT030), coil spring with reduced heat set (WF), and constant pitch with coil diameter d_7 ground (CSN), medium nominal contact pressure p_0 = 1.5 MPa (PN1.5):

Piston ring ISO 6626-3 SOV-S-V40 - 100 × 3 × 0,20 - MC65/NT030 WF CSN PN1,5

5 Common features

5.1 Ring width h_1 and radial wall thickness a_1

<u>Table 1</u> shows common features for ring width h_1 and radial wall thickness a_1 .

Table 1 — Ring width \boldsymbol{h}_1 and radial wall thickness \boldsymbol{a}_1

Dimensions in millimetres

Din a suidab	Radial wall thickness			
Ring width	$a_1 \pm 0,15$		Туре	
$h_1 = ^{-0,01}_{-0,03}$	Small (Code: S)	Large (Code: L)		
1,5	1,5 to 1,8	_	SOR	
2,0	1,8 to 2,0	_	SOR	
2,5	1,8 to 2,0	_	SOR	
3,0	1,8 to 2,0	2,3 to 2,6	SOR and SOV	
4,0	2,0 to 2,6	2,8 to 3,2	SOR and SOV	

5.2 Land width h_5

<u>Table 2</u> shows common features for land width h_5 .

Table 2 — Land width h_5

Dimensions in millimetres

	Ring width	Land width		
iT	eh STAN	DARD	h_5 ± 0.0	VIEW
	(stanc	9.18 if	eh . ai`	_
	2,0	0,20		_
	2,5 <u>I</u>	SO 6 0220 3:201	9 0,25	_
https://st	andards.igen.ai/catalo	g/stan ol_iazo s/sist/	784 0,2 75a-a	a65c-4 d 7 3 0b7da-
	4,0 ^{a49bd02}	89120.20^{1}	0,25	0,30
	^a For diameters to 4,0 mm, land wic	0		ring width equal not be used.

5.3 Land angle α , β

<u>Table 3</u> shows common features for land angle α , β .

Table 3 — Land angle α , β

Land angle	Range of nominal angle	Tolerance
inside α	5° to 20°a	±5°
outside β	10° to 30°a	±5°
a Nominal ang manufacturer and		eement between

5.4 Land spacing B_3

<u>Table 4</u> shows common features for land spacing B_3 .

Table 4 — Land spacing B_3

Dimensions in millimetres

Ring width	Land spacing	
h_1	B_3	
1,5	0,90 to 1,00	
2,0	1,25 to 1,45 ^a	
2,5	1,35 to 1,75 ^a	
3,0	1,45 to 2,10 ^a	
4,0	1,80 to 3,20 ^a	
^a $B_3 > (c_1 + 0.95)$.		

5.5 Slot sizes

<u>Table 5</u> shows common features for slot sizes.

Table 5 — Standard slot sizes

Dimensions in millimetres

Ring width	Slot width	Slot length	Slot spacing
h_1	c_1	w_1	w_3
1,5 _{Ch}	0,3 to 0,5	1,4 to 2,5 D	R 15 to 10 T
2,0	0,3 to 0,5	1,4 to 2,5	5 to 10
2,5	0,4 to 0,6	2,0 to 3,0	1.25 to 10
3,0	0,5 to 0,7	2,5 to 3,5	5 to 10
4,0	.0,6 to 1,0	3,0 to 5,0	5 to 10

Slots may open into the gap faces (see Figure 3).28912d/iso-6626-3-2019

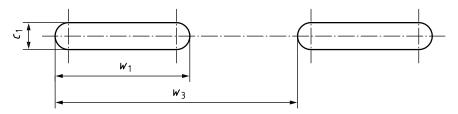


Figure 3 — Arrangement of slots

5.6 Nitrided surface

<u>Table 6</u> shows common features for nitrided surfaces.

Table 6 — Nitrided case depth of peripheral surface and sideface

Dimensions in millimetres

	Nitrided case depth ^a		
Code	Peripheral surface	Sideface	
	min.	min.	
NT010	0,010	0,005	

It is not recommended for rings $h_1 = 1.5$ mm.

 $^{^{}b}$ It is not recommended for land width $h_{5} \le 0.20$ mm.