SLOVENSKI STANDARD
SIST EN 50221:1999

01-april-1999

Common interface specification for conditional access and other digital video
broadcasting decoder applications

Common interface specification for conditional access and other digital video
broadcasting decoder applications

Festlegung der einheitlichen Schnittstelle fir Zugriffsbeschrankung und andere digitale
Fernsehrundfunkdecoder-Anwendungen

Spécification d'une interface commune pour I'acces conditionnel et d'autres applications
dans un décodeur de télévision numérique

Ta slovenski standard je istoveten z: EN 50221:1997

ICS:
33.160.40 Video sistemi Video systems
SIST EN 50221:1999 en

2003-01.Slovenski institut za standardizacijo. RazmnoZevanje celote ali delov tega standarda ni dovoljeno.

SIST EN 50221:1999

iTeh STANDARD PREVIEW
(standards.iteh.ai)

SIST EN 50221:1999
https://standards.iteh.ai/catalog/standards/sist/85353497-586d-4b4c-9cct
4cfSeadb8a46/sist-en-50221-1999

EUROPEAN STANDARD EN 50221
NORME EUROPEENNE

EUROPAISCHE NORM February 1997

ICS 33.160.40

Descriptors: Telecasting, television receivers, decoders, interfaces, design, physical properties, open systems interconnection,
physical layers, data link layer, transport layer, session layer, application layer, protocols, man-machine systems,
specifications

English version

Common interface specification for conditional access and
other digital video broadcasting decoder applications

Spécification d’une interface commune Festlegung der einheitlichen

pour |'accés conditionnel et d’autres Schnittstelle fir Zugriffsbeschrankung
applications dans un décodeur de und andere digitale

télévision numérique Fernsehrundfunkdecoder-Anwendungen

This European Standard was approved by CENELEC on 1997-02-15. CENELEC members are bound to
comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other
language made by transiation under the responsibility of a CENELEC member into its own language and
notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Denmark, Finland,
France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain,
Sweden, Switzeriand and United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europédisches Komitee fiir Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 1997 CENELEC - Ali rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Ref. No. EN 50221:1997 E

Page 2
EN 50221:1997

Foreword

This draft European Standard was prepared by the Technical Committee CENELEC TC 206, Broadcast '
Receiving Equipment. o

The text of the draft was submitted to the Unique Acceptance Procedure and was approved by CENELEC as
EN 50221 on 1997-02-15. . :

The following dates were fixed:
- latest date by which the EN has to be implemented
at national level by publication of an identical .
national standard or by endorsement (dop) 1997-10-01

- latest date by which national standards »)
conflicting with the EN have to be withdrawn . (dow) 1997-10-01

Page 3 '
EN 50221:1997

Contents
1 Introduction and scope 4
2 Definitions 5
4 Design philosophy 5
4.1 Layering 6
4.2 Physical implementation 6
4.3 Client-server 6
4.4 Coding of data 6
4.5 Extensibility 6
4.6 Incorporation of existing standards 7
5 Description and architecture 7
5.1 Overview 7
5.2 Transport Stream Interface 7
5.3 Command Interface 7
5.4 Physical requirements 8
5.5 Operational example 10
6 Transport Stream Interface (TSI) 10
6.1 TSI - physical, link layers 10
6.2 . TSI - transport layer 11
6.3 TSI - upper layers 11
7 Command interface - Transport & Session Layers 11
7.1 Generic Transport Layer. 12
7.2 Session Layer 16
8 Command interface - Application layer 23
8.1 Introduction 23
8.2 Resources 23
83 Application protocol data units 24
8.4 System management resources 25
8.5 Host control and information resources : 33
8.6 Man-machine interface resource 35
8.7 Communications resources 50
8.8 Resource identifiers and application object tags 54
Annex A : PC Card based physical layer (normative) 58
Al General description 58
A2 Electrical interface 59
A3 Link layer 61
A4 Implementation-specific Transport sublayer over PC Card Interface 62
A5 PC Card subset to be used by conformant Hosts and Modules 70
Annex B : Additional objects (informative) 78
B.1 Authentication 78
B.2 EBU Teletext Display Resource 79
B.3 Smart Card Reader Resource Class 80

B.4 DVB EPG Future Event Support Class 84

Page 4
EN 50221:1997

1 Introduction and scope

A set of standards has been designed to be used in digital video broadcasting. These standards include source
coding, channel coding, service information and decoder interfaces. In addition, a conditional access system is
used when there is a need to control access to a broadcast service. It has been decided that the conditional
access system need not be standardised, although a common scrambling algorithm is provided. It remains for

. broadcasters to access decoders with different conditional access systems and to ensure that they have choice of
supply of such systems. A solution is to use the common scrambling algorithm and to execute solutions for
access based on commercial agreements between operators. This solution can operate with single CA systems
embedded in decoders.

A second solution is based on a standardised interface between a module and a host where CA and more gen-
erally defined proprietary functions may be implemented in the module. This solution also allows broadcasters
to use modules containing solutions from different suppliers in the same broadcast system, thus increasing their
choice and anti-piracy options. The scope of this document is to describe this cormmon interface.

The decoder, referred to in this specification as the host, includes those functions that are necessary to receive
MPEG-2 video, audio and data in the clear. This specification defines the interface between the host and the
scrambling and CA applications, which will operate on an external module.

' RGB Out
—_
RF In v
—+ Tuner (——p»{Demodulator MPEG Decoder .
Audio Out
V4 W .
(Remote)—#»=|Microprocessor Demultiplexer
% f Host
Scrambied Descrambled Common Interface
Control Transport Stream Transport Stream B

Descrambier

Microprocessor

Module

Smart
Card
(Optional)

Figure 1: Example of single module in connection with host

Two logical interfaces, to be included on the same physical interface, are defined. The first interface is the
MPEG-2 Transport Stream. The link and physical layers are defined in this specification and the higher layers
are defined in the MPEG-2 specifications. The second interface, the command interface, carries commands
between the host and the module. Six layers are defined for this interface. An example of a single module in
connection with a host is shown in figure 1.

Page 5
EN 50221:1997

This specification only defines those aspects of the host that are required to completely specify the interactions
across the interface. The specification assumes nothing about the host design except to define a set of services
which are required of the host in order to allow the module to operate.

The specification does not define the operation or functionality of a conditional access system application on
the module. The applications which may be performed by a module communicating across the interface are not
limited to conditional access or to those described in this specification. More than one module may be sup-
ported concurrently.

2 Definitions

For the purposes of this standard, the following definitons apply:

application : An application runs in a module, communicating with the host, and provides facilities to the user
over and above those provided directly by the host. An application may process the Transport Stream.

host : A device where module(s) can be connected, for example : an IRD, a VCR, aPC ..

module : A small device, not working by itself, designed to run specialised tasks in association with a host, for
example : a conditional access sub system, an electronic program guide application module, or to provide
resources required by an application but not provided directly by the host

resource : A unit of functionality provided by the host for use by a module. A resource defines a set of objects
exchanged between module and host by which the module uses the resource.

service : A set of elementary streams offered to/the user asa program! They'are related by a common syn-
chronisation. They are made of different data, i.e., video, audio, subfitles, other data...

transport stream : MPEG-2 Transport Stream.

3 Normative references

This European Standard incorporates by dated or undated reference, provisions from other publications. These
normative references are cited at the appropriate places in the text and the publications are listed hereafter. For
dated references, subsequent amendments to or revisions of any of these publications apply to this European
Standard only when incorporated in it by amendment or revision. For undated references the latest edition of
the publication referred to applies (including amendments).

(1] ISO/IEC 13818-1 Information technology - Generic coding of moving pictures and associated audio
information: Systems

[2] ISO 8824 1987 Open Systems Interconnection - Specification of Abstract Syntax Notation One
(ASN.])

[3] ISO 8825 1987 Open Systems Interconnection - Specification of basic encoding rules for Abstract
Syntax Notation One (ASN.1)

[4] ETS 300 468 Specification for Service Information (SI) in Digital Video Broadcasting (DVB)
systems

[5] ETR 162 Allocation of Service Information (SI) codes for Digital Video Broadcasting (DVB)
Systems

[6] PC Card Standard Volume 2 - Electrical Specification, February 1995, Personal Computer Memory
Card International Association, Sunnyvale, California

[71 PC Card Standard Volume 3 - Physical Specification, February 1995, Personal Computer Memory Card
International Association, Sunnyvale, California

[8] PC Card Standard Volume 4 - Metaformat Specification, February 1995, Personal Computer Memory
Card International Association, Sunnyvale, California

[9] prETS 300 743 DVB Subtitling Specification

Page 6
EN 50221:1997

4 Design philosophy -

4.1 Layering

The specification is described in layers in order to accommodate future variations in .implementation. The
application and session layers are defined for all applications of the common interface. The transport and link
layers may be dependent on the physical layer used in a particular implementation. The physical interface is
defined within this specification and includes the complete physical specification of the module

The layering of the specification allows flexibility in the use of the interface for a range of applications beyond
CA. It also allows for multiple instance of CA processes to exist for the same host.

A representation of the basic layering on the command interface is shown in figure 2. The host may set up
transport connections with more than one module, which may be connected directly or indirectly to the host.
Each connection is maintained while the module is present. Each module may manage a number of differerit
sessions with the host.

Appplicatio
Process

=]

I'" Transport
—4 Connection

Session

HOST

[

Figure 2: Layering on the command interface

4.2 Physical implementation

The baseline specification includes the implementation on a physical interface compatible with the PC Card
standard used in the Personal Computer industry. Other physical implementations are allowed for in the future.

4.3 Client-servér

The interface is designed on the principle that applications, as clients, use resources provided by a server. The
applications reside on a module and resources can be served either by the host or another niodule in a way
managed by the host. The term ‘resources’ has been used in preference to ‘services’ as that term is common in
the broadcasting field for TV and radio services and there is a need to avoid confusion. ' ”

4.4 Coding of data

The communication of data across the command interface is defined in terms of objects. The objects are coded.
by means of a general Tag-Length-Value coding derived from that used to code ASN. 1 syntax (see [2] and [3]).
This is generally extensible. There is a particular transport layer coding for the PC Card implementation but it
may be different in other physical implementations. However the semantics would be identical.

4.5 Extensibility

The higher layers have been designed to be extensible. As indicated above, the TLV coding used is extensible

so that new objects can be added, and existing objects can be extended. There is no problem about running out

of tag coding space, or length restrictions on the values. The Resource Manager resource provides a mecha-

nism for extending the range of resources provided by hosts, both for CA purposes and for other module-based
“applications. h

Page 7
EN 50221:1997

4.6 Incorporation of existing standards

Existing standards have been used, where possible and appropriate, as building blocks for this specification.
This gives important time-to-market benefits, as all the standards development work has already been done. It
also gives implementation benefits in that software and hardware already developed for existing standards may
be re-used here, with potential cost benefits.

5 Description and architecture

5.1 Overview

A partial logical architecture has been assumed for a host in order to define the place in the host where the
common interface can logically occur. The impact upon the freedom of choice for host designers in other
respects has been minimised. Figure 1 shows a simplified picture of a typical host architecture and the posi-
tioning of the interface within it. Note that there can be more than one instance of the interface on a host.

The common interface consists of two components, the Transport Stream Interface and the Command Inter-
face. Both are layered to make the overall interface design and implementation easier. The upper layers are
common to all implementations but alternative lower-layer implementations are possible. This specification
includes one based upon the PC Card standard but others may be included in future versions.

5.2 Transport Stream Interface

The Transport Stream Interface carries MPEG-2 transport packets in both directions. If the module gives
access to any services in the transport stream and those services have been selected by the host, then the pack~
ets carrying those services will be returned, descrambled; and the)other packets are not modified. On the Trans-
port Stream Interface a constant 'delay through the module and any dssociated physical layer conditioning logic
is preserved under most conditions (see, ,5.42). The Transport Stream Interface layers are shown in figure 3
below. The Transport Layer and all upper layers are defined in the MPEG-2 specification - ISO 13818.

Upper Layers

Transport Layer
PC Card Link Layer
PC Card Physical Layer

Figure 3: Transport Stream Interface Layers

5.3 Command Interface

The Command Interface carries all the communication between the application(s) running in the module and
the host. The communication protocols on this interface are defined in several layers in order to provide the
necessary functionality. This functionality includes: the ability to support multiple modules on one host, the
ability to support complex combinations of transaction between module and host, and an extensible set of func-
tional primitives (objects) which allow the host to provide resources to the module. The layering is shown in
figure 4 below.

The PC Card implementation described in this specification has its own Physical and Link layers, and also its
own Transport lower sublayer. A future different physical implementation is likely to differ in these layers and
any difference will be restricted to these layers. The implementation-specific features of the Transport lower
sublayer are limited to coding and specific details of the message exchange protocol, and the common upper
sublayer defines identification, initiation and termination of Transport layer connections. The Session,
Resource and Application layers are common to all physical implementations.

Page 8
EN 50221:1997

Applicaﬁon

Resources :

User Interface Low-Speed System - tional extensions
Communications

Session Layer

Generic Transport Sublayer

PC Card Transport Sublayer
~ PCCard Link Layer‘ ;
- PC Card Physigal_ Layer

Figure 4: Command Interface Layers

As far as possible the Application layer of the interface has been designed to be free of specific application
semantics. Communication is in terms of resources, such as User Interface interaction, and low-speed commu-
nications, that the host provides to the application(s) running on a module. This strategy makes it very much
easier to provide modules performing other tasks than just Conditional Access. ’

5.4 Physical requirements

5.4.1 Imtroduction

This clause defines the requirements the Physical| Layer must micet inlorder to carry out all the required func-
tions. The following Physical Layer characteristics are not constrained here, although the specification for any
Physical Layer used will define them: mechanical and electrical connection between the host and the module,
i.e. socket type & size, number of pins, voltages, impedances, power-limits, :

Requirements and limits on the following Physical Layer characteristics are defined here:

« Transport Stream and Command logical connections;
* data rates;

* connection & disconnection behaviour;

* low-level initialisation;

* use of multiple modules.

S.4.2 Data and Command logical connections

The Physical Layer shall support independent both-way logical connections for the Transport Stream and for
commands.

The Transport Stream Interface shall accept an MPEG-2 Transport Stream, consisting of a sequence of Trans-
port Packets, either contiguously or separated by null data. The returned Transport Stream may have some of
the incoming transport packets returned in a descrambled form. The Transport Stream Interface is subject to
the following restrictions:

1 When the module is the source of a transport stream its output shall comply with ISO/IEC 13818-9.

2 Each output packet shall be contiguous if the module is the source of the packet or the input packet is
contiguous.

Page 9
EN 50221:1997

3 A module shall introduce a constant delay when processing an input transport packet, with a maximum
delay variation (tmdv) applied to any byte given by the following formula:

tmdvyy,y = (@ * TMCLKD) + (2 * TMCLKO).

and
tmdvy, . <= 1 microsecond when n =0
where:
tmdv = Module Delay Variation
n = Number of gaps present within the corresponding input transport packet

TMCLKI = Input data clock period
TMCLKO = Output data clock period

* A gap'is defined to be one MCLKI rising edge for which the MIVAL signal is inactive.

* All hosts are strongly recommended to output contignous transport packets.

* Hosts may only output non-contiguous transport packets if they implement less than 3 common interface
sockets.

* Inter packet gaps may vary considerably.

4 A CI compliant host should be designed to support Nm modules. Nm is the greater of the number of CI
sockets implemented by the host or 16. It should tolerate the jitter resulting from Nm modules plus the
jitter in the input transport stream. The worst case jitter may arise either from the host's own input
followed by Nm modules or an input module with a ISO/IEC 13818-9 compliant output followed by
(Nm - 1) modules.

5 All interfaces shall ‘support a data rate of at least’ 58 Mb/s'averaged-over the period between the sync
bytes of successive transport packets.
6 All interfaces shall support'a minimum byte transfer clock period of 111 ns.

The Command Interface:shall transfer comimands as'defined by the appropriat¢’ Transport Layer part of this
specification in both directions. The data rate supported in each direction shall be at least 3,5 Megabits/sec.

5.4.3 Connection and disconnection behaviour

The Physical layer shall support connection and disconnection of the module at any time, whether the host is
powered or not. Connection or disconnection shall not cause any electrical damage to either module or host,
and shall not cause any spurious modification of stored non-volatile data in the module. When a module is not
connected the Transport Stream Interface shall bypass the module, and the Command Interface to that module
shall be inactive. On connection of a module, the host shall initiate a low-level initialisation sequence with the
module. This will carry out whatever low-level connection establishment procedures are used by the particular
Physical Layer, and then establish that the module is a conformant DVB miodule. If successfully completed, the
host shall establish the Transport Stream connection by inserting the module into the host's Transport Stream
path. It is acceptable that some Transport Stream data is lost during this process. At the same time a Transport
Layer connection shall be established on the Command Interface to allow Application Layer initialisation to
take place and normal Application Layer communications to proceed.

If the Physical Layer is used in other applications than as a DVB-conformant module connection, and if a non-
conformant module is connected to the host, no damage shall be caused to the module or the host, and the host
shall not attempt to complete initialisation as though it were a DVB-conformant module. Optionally, the host
may signal to the user that an unrecognised module has been connected.

On disconnection of the module, the host shall remove the module from the Transport Stream data path. It is
acceptable that some Transport Stream data is lost during this process. Also, the Command Interface connec-
tion shall be terminated by the host.

Page 10
EN 50221:1997

S5.4.4 Multiple modules

The Application Layer places no limit on the number of modules which may be connected to the host at any
time. However, particular Physical Layers and particular host design choices may do so. The Physical Layer
specification must allow there to be several modules connected simultaneously to the host, even though a
minimum host design may only provide for one connection. Ideally the Physical Layer specification should
place no hard limit on the number of modules, but if a limit is imposed, then it shall be set at no less than 15
modules.

Where there is provision for more than one module to be connected, the Transport Stream Interface connection
shall be daisy-chained through each module in turn, as illustrated in figure 5 below. The host shall maintain
separate and simultaneous Command Interface connections to each module, so that transactions between host
and module are treated independently for each module. When a module is unplugged the Command Interface
transport layer connection to any other module shall not be disturbed or terminated.

When several modules are connected to a host, the host should be able to select the modlﬁe(s) relevant for the
descrambling of the selected service(s).

Host CA modulé 1

(N

CA module 2

R

]

CA'module }

Figure S: Transport Stream Interface chaining between modules

5.5 Operational example

To illustrate some of the features described above consider this example of the processes that occur when a PC
Card module is plugged into a host. The PC Card initialisation commences with sensing of the module being
plugged in by sense pins on the interface. The host then reads the Card information Structure residing in the
Attribute Memory of the module. This contains low-level configuration information for the module, such as PC
Card read and write addresses used by the module, and indicates to the host that it is a DVB-conformant mod-
ule. The host now turns off the Transport Stream Interface bypass link and allows the transport packets to flow
through the module. This introduces a delay, and consequently a short gap in the Transport Stream data, but
this is unavoidable. At the same time the physical layer interface initialisation process takes place to negotiate
the buffer size to be used for communication. At this point the physical layer initialisation process is complete
and the upper-layer initialisation process, common to all physical implementations, commences with the host
creating a Transport Layer connection to the module. This process and the rest of the upper-layer initialisation
process are described elsewhere in this document.

The initialisation process will be logically similar for other physical implementations though the details will
differ. ‘

6 Transport Stream Interface (TSI)

6.1 TSI - physical, link layers
These layers depend on the physical implementation of the module.

Page 11
EN 50221:1997

6.2 TSI - transport layer

The transport layer used is the same as the MPEG-2 System transport layer. Data travelling over the transport
stream interface is organised in MPEG-2 Transport Packets. The whole MPEG-2 multiplex is sent over this
transport stream interface and is received back fully or partly descrambled. If the packet is not scrambled, the
module returns it as is. If it is scrambled and the packet belongs to the selected service and the module can give
access to that service, then the module returns the corresponding descrambled packet with the trans-
port_scrambling_control flag set to '00".

If scrambling is performed at Packetised Elementary Stream (PES) level, then the module reacts in the same
way and under the same conditions as above, and returns the corresponding descrambled PES with the
PES_scrambling_control flag set to '00".

The transport packet and the PES packet are completely defined in the MPEG-2 System specification [1].

6.3 TSI - upper layers

Apart from the Packetised Elementary Stream, any layering or structure of the MPEG-2 data above the Trans-
port Stream layer is not relevant to this specification. However the specification does assume that the module
will find and extract certain data required for its operation, such as ECM and EMM messages, directly from
the Transport Stream.

7 Command Interface - Transport & Session Layers

The communication of data across the command interface is defined in terms of objects. The objects are coded
by means of a general Tag-Length-Value coding derived from that used to code ASN.1 syntax.

Table 1: Length field used by all Protocol Data Units at Transport, Session & Application Layers

Syntax No. of bits Mnemonic
length_field() {
size_indicator 1 bslbf
if (size_indicator == 0)
length_value 7 uimsbf
else if (size_indicator == 1) {
length_field_size 7 uimsbf
for (i=0; i<length_field_size; i++) {
length_value_byte : 8 bsibf
3
3
}

This clause describes the ASN.1 objects for the Transport and Session Layers that travel over the command
interface. For all these objects, and for the Application Layer objects in clause 8, the coding in table 1 applies
for the Length field, which indicates the number of bytes in the following Value field.

Size_indicator is the first bit of the length_field. If size_indicator = 0, the length of the data field is coded in
the succeeding 7 bits. Any length from 0 to 127 can thus be encoded on one byte. If the length exceeds 127,
then size_indicator is set to 1. In this case, the succeeding 7 bits code the number of subsequent bytes in the
length field. Those subsequent bytes shall be concatenated, first byte at the most significant end, to encode an
integer value. Any value field length up to 65535 can thus be encoded by three bytes.

The indefinite length format specified by the basic encoding rules of ASN.1 (see [3]) is not used.

Page 12
EN 50221:1987

7.1 Generic Transport Layer

7.1.1 Introduction

The Transport Layer of the Command Interface operates on top of a Link Layer provided by the particular
physical implementation used. For the baseline PC Card physical implementation the Link Layer is described
in annex A. The transport protocol assumes that the Link Layer is reliable, that is, data is conveyed in the
correct order and with no deletion or repetition of data.

The transport protocol is a command-response protocol where the host sends a command to the module, using
a Command Transport Protocol Data Unit (C_TPDU) and waits for a response from the module with a
Response Transport Protocol Data Unit (R_TPDU). The module cannot initiate communication: it must wait
for the host to poll it or send it data first. The protocol is supported by eleven Transport Layer objects. Some of
them appear only in C_TPDUs from the host, some only in R_TPDUs from the module and some can appear in
either. Create_T_C and C_T_C_Reply, create new Transport Connections. Delete T C and D_T_C_Reply,
clear them down. Request T C and New_T_C allow a module to request the host to create a new Transport
Connection. T_C_Error allows error conditions to be signalled. T_SB carries status information from module
to host. T_RCV requests waiting data from a module and T_Data_More and T _Data_Last convey data from
higher layers between host and module. T_Data_Last with an empty data field is used by the host to poll regu-
larly for data from the module when it has nothing to send itself. ' ' . R

A C_TPDU from the host contains only one Transport Protocol Object. AR_TPDU from a module may carry
one or two Transport Protocol Objects. The sole object or second object of a pair in a R_TPDU is always a
T_SB object.

7.1.2 Transport protocol objects

All transport layer objects contain a transport connection identifier. This is one octet, allowing up to 255
Transport Layer connections to be active 6n the host simultanieously. Transport connection identifier value 0 is -
teserved. The identifier value is always assigned by the host. The protocol is described in detail here as it is -
common to all physical implementations but the objects are only described in general terms. The detailed cod-
ing of the objects depends upon the particular physical layer used. The coding for the, PC Card physical imple-
mentation is described in annex A. >

The host shall allow at least 16 transport connections to be created per module socket supported but preferably
all 255 connections distributed amongst the module sockets.

1 Create_T_C creates the Transport Connection. It is only issued by the host and carries the transport
connection identifier value for the connection to be established. : :

2 C_T_C_Reply is the response from the target module to Create_T_C and carries the transport connec-
tion identifier for the created connection.

3 Delete_T_C deletes an existing Transport Connection. It has as a parameter the transport connection
identifier for the connection to be deleted. It can be issued by either host or module. If issued by the
module it does so in response to a poll or data from the host. :

4 D_T_C Reply is the reply to the delete. In some circumstances this reply may not reach its destination,
so the Delete T_C object has a time-out associated with it. If the time-out matures before the reply is
received then all actions which would have been taken on receipt of the reply can be taken at the time-
out. o v o o

5 Request_T_C requests the host to create a new Transport Connection. It is sent on an existing Transport
Connection from that module. It is sent in response to a poll or data from the host.

Page 13
EN 50221:1997

6 New_T_C is the response to Request T_C. It is sent on the same Transport Connection as the
Request_T_C object, and carries the transport connection identifier of the new connection. New_T Cis
immediately followed by a Create_T_C object for the new connection, which sets up the Transport Con-
nection proper.

7 T_C_Error is sent to signal an error condition and carries a 1-byte error code specifying the error. In
this version this is only sent in response to Request T_C to signal that no more Transport Connections
are available.

8 T_SB is sent as a reply to all objects from the host, either appended to other protocol objects or sent on
its own, as appropriate. It carries one byte which indicates if the module has data available to send.

9 T_RCV is sent by the host to request that data the module wishes to send (signalled in a previous T_SB
from the module) be returned to the host.

10 T Data_More and T_Data_Last convey data between host and module, and can be in either a C_TPDU
or aR_TPDU. From the module they are only ever sent in response to an explicit request by a T_RCV
from the host. T_Data_More is used if a Protocol Data Unit (PDU) from a higher layer has to be split
into fragments for sending due to external constraints on the size of data transfers. It indicates that at
least one more fragment of the upper-layer PDU will be sent after this one. T_Data_Last indicates the
last or only fragment of an upper-layer PDU.

7.1.3 Transport protocol

Figures 6 and 7 show the state transition diagrams for connection set-up and clear-down on the host side and
the module side respectively, Each state transition arc is labelled with the event that causes that transition. If
the transition also causes an object to be'sent, then this is indicated with boxed text.

When the host wishes to set up a transport connection to a module, it sends the Create_T_C object and moves
to state 'In Creation'. The module shall reply directly with a C_T_C_Reply object. If after a time-out period the
module does not respond, then the host ‘rétirns! to)the idle state (via the 'Timeout' arc). The host will not
transmit or poll again on that particular transport connection, ‘and a/late’C_T-/C ‘Reply will be ignored. If, sub-
sequently, the host re-uses the same! transport connection identifier, then the module will receive Create T C
again, and from this it shall infer that the old transport connection is dead, and a new one is being set up.

When the module replies with C_T_C_Reply the host moves to the 'Active' state of the connection. If the host
has data to send, it can now do so, but otherwise it issues a poll and then polls regularly thereafter on the con-
nection.

If the host wishes to terminate the transport connection, it sends a Delete T C object and moves to the 'In
Deletion' state. It then returns to the 'Idle’ state upon receipt of a D_T_C_Reply object, or after a time-out if
none is received. If the host receives a Delete_T_C object from the module it issues a D_T_C_Reply object and
goes directly to the idle state. Except for the 'Active' state, any object received in any state which is not
expected is ignored.

In the 'Active' state the host issues polls periodically, or sends data if it has an upper-layer PDU to send. In
response it receives a T_SB object, preceded by a Request_T_C or Delete T_C object if that is what the module
wants to do.

In the “Active’ state, data can be sent by the host at any time. If the module wishes to send data it must wait for
a message from the host - normally data or a poll - and then indicate that it has data available in the T_SB
reply. The host will then at some point - not necessarily immediately - send a T_RCV request to the module to
which the module responds by sending the waiting data in a T_Data object. Where T_Data_More is used, each
subsequent fragment must wait for another T RCV from the host before it can be sent.

	Ðãæœ–§ƒ��µýìãM‹ËóÚV4QÝ4;7®¹¸YÝQ±�Mç>�åÄ&žoËg>™eN±x˙ü2¡ÕBç¬J�=˘àÃ—�€©\°àÓ‘Å{‘Ì.ýH

