INTERNATIONAL STANDARD

ISO 1658

Fourth edition 2015-08-01

Natural rubber (NR) — Evaluation procedure

Caoutchouc naturel (NR) — Méthode d'évaluation

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 1658:2015 https://standards.iteh.ai/catalog/standards/sist/ef716776-6ea3-4de1-8ddb-14bd99ac8089/iso-1658-2015

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 1658:2015 https://standards.iteh.ai/catalog/standards/sist/ef716776-6ea3-4de1-8ddb-14bd99ac8089/iso-1658-2015

COPYRIGHT PROTECTED DOCUMENT

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

CO	ntent	S	Page
Fore	word		iv
1		oe	
2		mative references	
3		pling and further preparative procedures	
4	Phys	sical and chemical tests on raw rubber	2
	4.1 Mooney viscosity		
	4.3	Other specifications on requirements	
5	5.1	General	2
	5.2 5.3	Standard test formulae Procedure	
	0.0	5.3.1 Equipment and procedure	3
		5.3.2 Mill mixing procedure for formulae 1 and 2 (gum compounds)5.3.3 Mill mixing procedure for formulae 1 and 2 (gum compounds)	3
		using masterbatches5.3.4 Mixing procedures for formula 3 (black-filled compound)	
6	Eval	uation of vulcanization characteristics by a curemeter test	8
	6.1 6.2	Using an oscillating-disc curemeter. Using a rotorless curemeter	 8
7	Eval	uation of tensile str <mark>ess-strain properties of vulc</mark> anized test mixes	
8	Test	report	9
Ann	ex A (no	report ISO 1658:2015 ormative) Procedure for preparing gum compounds through use of maste	erbatches10
		nformative) Precision statement for both mill and internal mixer	
Rihl	iogranł	hv	17

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 45, Rubber and rubber products, Subcommittee SC 3, Raw materials (including latex) for use in the rubber industry.

This fourth edition cancels and replaces the third edition (ISO 1658:2009), of which it constitutes a minor revision to update the normative references (in Clause 2 and throughout the text).

Natural rubber (NR) — Evaluation procedure

WARNING — Persons using this International Standard should be familiar with normal laboratory practice. This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

1 Scope

This International Standard specifies

- physical and chemical tests on raw natural rubbers;
- standard materials, standard test formulae, equipment and processing methods for evaluating the vulcanization characteristics of natural rubber (NR).

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 37, Rubber, vulcanized or thermoplastic - Determination of tensile stress-strain properties

ISO 248-1, Rubber, raw — Determination of volatile-matter content — Part 1: Hot-mill method and oven method ISO 1658:2015

https://standards.iteh.ai/catalog/standards/sist/ef716776-6ea3-4de1-8ddb-

 $ISO~289-1, Rubber, unvulcanised — \textit{Determinations using a shearing-disc viscometer} \\ -- \textit{Part 1: Determination of Mooney viscosity}$

ISO 1795, Rubber, raw natural and raw synthetic — Sampling and further preparative procedures

ISO 2000:2014, Rubber, raw natural — Guidelines for the specification of technically specified rubber (TSR)

ISO 2007, Rubber, unvulcanized — Determination of plasticity — Rapid-plastimeter method

ISO 2393, Rubber test mixes — Preparation, mixing and vulcanization — Equipment and procedures

ISO 3417, Rubber — Measurement of vulcanization characteristics with the oscillating disc curemeter

ISO 6502, Rubber — Guide to the use of curemeters

ISO 23529, Rubber — General procedures for preparing and conditioning test pieces for physical test methods

3 Sampling and further preparative procedures

- **3.1** A laboratory sample of mass approximately 1,5 kg shall be prepared by the method described in ISO 1795.
- **3.2** The rubber shall be homogenized in accordance with ISO 1795.
- **3.3** Preparation of the test samples shall be in accordance with ISO 1795.

4 Physical and chemical tests on raw rubber

4.1 Mooney viscosity

Determine the Mooney viscosity in accordance with ISO 289-1 on a test sample prepared as indicated in 3.3. Record the result as ML(1+4) at 100 °C.

4.2 Volatile-matter content

Determine the volatile-matter content by the oven method specified in ISO 248-1 on a test sample prepared as indicated in 3.3.

4.3 Other specifications on requirements

Any specific values for physical and chemical properties other than the above (4.1 and 4.2) shall be based upon the grades given in Table 2 of ISO 2000:2014.

5 Preparation of test mix

5.1 General

The following standard formulae and mixing procedures are recommended:

- a) two gum-stock formulae for comparative testing of the vulcanization characteristics of natural rubber for use in non-black-filled compounds;
- b) a black-filled formula for comparative testing of natural rubber for use in black-filled compounds;
- c) a mill mixing procedure including masterbatches for the two gum-stock formulae;
- d) a mill mixing procedure and a laboratory internal mixer (LIM) mixing procedure for the black-filled formula.

NOTE The black-filled formula (formula 3 in <u>Table 1</u>) can also be used for comparative testing of isoprene rubbers (IRs).

5.2 Standard test formulae

The standard test formulae are given in <u>Table 1</u>.

The materials shall be national or international standard reference materials.

Table 1	- Stan	dard t	test f	formulae
---------	--------	--------	--------	----------

	Number of parts by mass			
Material	Formula (1) ACS 1	Formula (2) TBBS 1	Formula (3) Black-filled	
Natural rubber	100,00	100,00	100,00	
Zinc oxide	6,00	6,00	5,00	
Sulfur	3,50	3,50	2,25	
Stearic acid	0,50	0,50	2,00	
Industry reference black ^a	_	_	35,00	
MBT b	0,50	_	_	
TBBS c	_	0,70	0,70	
Total	110,50	110,70	144,95	

a The current IRB shall be used.

5.3 Procedure iTeh STANDARD PREVIEW

5.3.1 Equipment and procedure and ards.iteh.ai)

Equipment and procedure for the preparation, mixing and vulcanizing shall be in accordance with ISO 2393.

https://standards.iteh.ai/catalog/standards/sist/ef716776-6ea3-4de1-8ddb-

14bd99ac8089/iso-1658-2015 5.3.2 Mill mixing procedure for formulae 1 and 2 (gum compounds)

The standard laboratory mill batch mass, in grams, shall be four times the formulation batch mass (i.e. $110.5 \text{ g} \times 4$, = 442 g, for formula 1). Maintain the surface temperature of the rolls at 70 °C ± 5 °C and a good rolling bank at the nip of the rolls during mixing. If this is not obtained with the nip settings specified hereunder, small adjustments to the mill openings might be necessary.

	Duration (min)
a) Pass the rubber twice between the rolls without banding, with the mill opening set at 0,2 mm.	_
b) Band the rubber with the mill opening set at 1,4 mm. When a smooth band has been obtained, adjust the mill opening to 1,8 mm.	4
c) Add the zinc oxide, the stearic acid, the sulfur and the MBT or TBBS.	4
d) Make three 3/4 cuts from each side.	3
e) Cut the batch from the mill. Set the mill opening to 0,8 mm and pass the rolled batch endwise through the rolls six times.	2
Total time	13

f) Check the mass of the batch (see ISO 2393). If the mass of the batch differs from the theoretical value by more than +0.5% or -1.5%, discard the batch and remix.

b 2-Mercaptobenzothiazole.

^c N-tert-butyl-2-benzothiazole-sulfenamide. This shall be in powder form having an initial ether-insoluble or ethanolinsoluble matter content of less than 0,3 % (by mass). The material shall be stored at room temperature in a closed container and the ether-insoluble or ethanol-insoluble matter shall be checked every 6 months. If this is found to exceed 0,75 % (by mass), the material shall be discarded or recrystallized.

- g) Cut sufficient material from the batch for curemeter testing and, if required, for determination of the Mooney viscosity of the unvulcanized batch in accordance with ISO 289-1. Sheet the batch to approximately 2,2 mm for preparing test slabs or to the appropriate thickness for preparing ISO ring test pieces.
- h) Condition the batch for 2 h to 24 h after mixing and prior to vulcanizing, if possible at standard temperature and humidity as defined in ISO 23529.

5.3.3 Mill mixing procedure for formulae 1 and 2 (gum compounds) using masterbatches

Compounding materials such as accelerators, sulfur or fillers can be incorporated into the rubber as masterbatches. This technique improves the accuracy of compounding-material incorporation and is also more convenient.

The procedure for preparing masterbatches and test mixes for the gum compounds is given in Annex A.

5.3.4 Mixing procedures for formula 3 (black-filled compound)

5.3.4.1 Mill mixing

5.3.4.1.1 Measurement of rapid plasticity number

Load the rubber on to the mill with the mill opening set at 0,5 mm. Masticate until a smooth band and rolling bank are obtained.

iTeh STANDARD PREVIEW

After mastication, determine the rapid plasticity number in accordance with ISO 2007. The rapid plasticity number shall not exceed 45, which is approximately equivalent to a viscosity of 70 Mooney units determined in accordance with ISO 289-1.

ISO 1658:2015

5.3.4.1.2 Mixing https://standards.iteh.ai/catalog/standards/sist/ef716776-6ea3-4de1-8ddb-14bd99ac8089/iso-1658-2015

The standard laboratory mill batch mass, in grams, shall be four times the formulation batch mass (i.e. $144,95 \text{ g} \times 4$, = 579,8 g, for formula 3). Maintain the surface temperature of the rolls at $70 \,^{\circ}\text{C} \pm 5 \,^{\circ}\text{C}$ and a good rolling bank at the nip of the rolls during mixing. If this is not obtained with the nip settings specified hereunder, small adjustments to the mill openings may be necessary.

	Duration (min)
a) Band the rubber with the mill opening set at 1,4 mm.	1
b) Add the stearic acid. Make one 3/4 cut from each side.	1
c) Add the zinc oxide and the sulfur. Make one 3/4 cut from each side.	2
d) Add the carbon black evenly across the mill at a uniform rate. When about half the black has been incorporated, open the mill to 1,9 mm and make one 3/4 cut from each side. Then add the remainder of the carbon black. When all the black has been incorporated, make one 3/4 cut from each side. Be certain to add the black that has dropped into the mill pan.	10
e) Add the TBBS. Make three 3/4 cuts from each side.	3
f) Cut the batch from the mill. Set the mill opening to 0,8 mm and pass the rolled batch lengthways through the mill six times.	3
Total time	20

- g) Check the mass of the batch. If the mass of the batch differs from the theoretical value by more than +0.5% or -1.5%, discard the batch and remix.
- h) Cut sufficient material from the batch for curemeter testing and, if required, for determination of the Mooney viscosity of the unvulcanized batch in accordance with ISO 289-1. Sheet the batch to approximately 2,2 mm for preparing test slabs or to the appropriate thickness for preparing ISO ring test pieces.
- i) Condition the batch for 2 h to 24 h after mixing and prior to vulcanizing, if possible at standard temperature and humidity as defined in ISO 23529.

5.3.4.2 Mixing using a laboratory internal mixer (LIM)

5.3.4.2.1 General

For laboratory internal mixers having nominal capacities of 65 cm^3 to about $2\ 000 \text{ cm}^3$, the batch mass shall be equal to the nominal mixer capacity, in cubic centimetres, multiplied by the density of the compound, in grams per cubic centimetre. This means that, if the laboratory internal mixer has a nominal capacity of 750 cm^3 , the batch mass for formula $3 \text{ is } 750 \times 1,103 \text{ g} (= 827,25 \text{ g})$.

For each batch mixed during the preparation of a series of identical mixes, the laboratory internal mixer conditions shall be the same. At the beginning of each series of test mixes, a machine-conditioning batch shall be mixed using the same formulation as the mixes under test. The laboratory internal mixer shall be allowed to cool down to $60\,^{\circ}\text{C}$ between the end of one test batch and the start of the next. The temperature setting shall not be altered during the mixing of a series of test batches.

5.3.4.2.2 Single-stage mixing standards.iteh.ai)

The mixing technique shall be such as to obtain a good dispersion of all the ingredients. $150 \cdot 1658 \cdot 2015$

The final temperature of the batch discharged after mixing shall not exceed 120 °C. If necessary, adjust the batch mass or the head temperature so that this condition is met.

NOTE 1 The mixing conditions given in <u>Table B.5</u> for each size of laboratory internal mixer may be helpful.

NOTE 2 Compounding materials other than rubber, carbon black and oil can be added to laboratory internal mixer batches more precisely and with greater ease if they are previously blended together in the proportions required by the formulation. Such blends can be made using a mortar and pestle, by mixing for 10 min in a biconical blender with intensifier bar turning, or by mixing in a blender for five 3 s periods and scraping the inside of the blender to dislodge materials stuck to the sides after each 3 s mix. A Waring blender has been found suitable for this method. Caution: if mixed for longer than 3 s, the stearic acid can melt and prevent good dispersion.

An example of a mixing procedure for a laboratory internal mixer is given in a) to h) hereafter.

	Duration (min)	Cumulative time (min)
a) Load the rubber, lower the ram and allow the rubber to be masticated.	1,0	1,0
b) Raise the ram and add the pre-blended zinc oxide, sulfur, stearic acid and TBBS, taking care to avoid any loss. Then add the carbon black, sweep the orifice and lower the ram.	1,0	2,0
c) Allow the batch to mix.	7,0	9,0

d) Turn off the motor, raise the ram, remove the mixing chamber and discharge the batch. Record the maximum batch temperature.

- e) After discharging the mixed batch, pass it through a mill set at 70 $^{\circ}$ C ± 5 $^{\circ}$ C once at a 0,5 mm mill opening and then twice at a 3,0 mm mill opening.
- f) Determine the batch mass and record. If it differs from the theoretical value by more than + 0.5 % or 1.5 %, discard the batch and remix.
- g) Cut a test piece for determining the vulcanization characteristics in accordance with ISO 6502 or ISO 3417, if required. Condition the test piece for 2 h to 24 h, if possible at standard temperature and humidity as defined in ISO 23529, before testing.
- h) If required, sheet the batch to approximately 2,2 mm for preparing test sheets or to the appropriate thickness for preparing ISO ring test pieces in accordance with ISO 37. To obtain the effects of mill direction, pass the folded batch four times between mill rolls set at 70 °C \pm 5 °C and the appropriate mill opening. Cool on a flat, dry surface.
- i) Condition the batch for 2 h to 24 h after mixing and prior to vulcanizing, if possible at standard temperature and humidity as defined in ISO 23529.

5.3.4.2.3 Two-stage mixing including mill for final mixing

5.3.4.2.3.1 General

The laboratory internal mixer shall be allowed to cool down to $60\,^{\circ}\text{C}$ between the end of one test batch and the start of the next.

5.3.4.2.3.2 Stage 1 — Initial mixing stage (standards.iteh.ai)

The mixing technique shall be such as to obtain a good dispersion of all the ingredients.

The final temperature of the batch discharged after mixing shall be between 150 °C and 170 °C. If necessary, adjust the batch mass or head temperature so that this condition is met.

An example of a mixing procedure for the initial mixing is given in a) to k) hereafter.

	Duration (min)	Cumulative time (min)
a) Adjust the temperature of the laboratory internal mixer to a starting temperature of 50 °C \pm 3 °C. Close the discharge door, set the rotor and raise the ram.	_	_
b) Load the rubber, lower the ram and allow the rubber to be masticated.	0,5	0,5
c) Raise the ram and load the zinc oxide, stearic acid and carbon black. Lower the ram.	0,5	1,0
d) Allow the batch to mix.	2,0	3,0
e) Raise the ram and clean the mixer throat and the top of the ram. Lower the ram.	0,5	3,5
f) Allow the batch to mix.	1,5	5,0

g) Discharge the batch.

h) After discharging the batch, immediately check the temperature of the batch with a suitable measuring device. If the temperature as measured falls outside the range $150\,^{\circ}\text{C}$ to $170\,^{\circ}\text{C}$, discard the batch.

- i) Pass the batch three times through a mill with a mill opening of 2,5 mm and at a roll temperature of 70 °C \pm 5 °C.
- j) Sheet the batch to an approximate thickness of 10 mm and determine the mass of the batch. If the mass differs from the theoretical value by more than +0.5% or -1.5%, discard the batch and remix.
- k) Leave the batch for at least 30 min and up to 24 h, if possible at standard temperature and humidity as defined in ISO 23529.

The smaller laboratory internal mixers do not provide enough compound for the final mill mixing as a batch mass of three times the formula mass is required. In these cases, the laboratory internal mixer may be used for the final mixing. The head temperature or the batch mass may be adjusted so that the final temperature of the discharged batch does not exceed 120 °C.

5.3.4.2.3.3 Stage 2 — Final mixing stage

The mixing technique shall be such as to obtain a good dispersion of all the ingredients. The final temperature of the batch discharged after mixing shall not exceed 120 °C.

When a laboratory internal mixer (LIM) is used, adjust, if necessary, the batch mass or the head temperature so that this condition is met.

When mill mixing is used, set the surface temperature of the rolls at 70 $^{\circ}$ C ± 5 $^{\circ}$ C and maintain it at this value during mixing. The standard laboratory mill batch mass, in grams, shall be based on three times the formula mass unless otherwise specified in the appropriate rubber evaluation procedure.

An example of an **LIM mixing procedure for the final mixing** is given in a) to h) hereafter. **(Standards.iteh.al)**

	ISO 1658:2015	Duration (min)	Cumulative time (min)
a)	https://standards.iteh.ai/catalog/standards/sist/ef716776-6ea3-4de1 Close the discharge door, set the rotor and raise the ram.	-8ddb	_
_	Load the rubber, the sulfur and the accelerator. Lower the ram d allow the rubber to be masticated.	0,5	0,5
c)	Allow the batch to mix.	1,5	2,0

- d) Raise the ram, open the mixing chamber and discharge the batch. Record the maximum batch temperature.
- e) After discharging the mixed batch, pass it four times through the mill at a roll temperature of $70 \,^{\circ}\text{C} \pm 5 \,^{\circ}\text{C}$ and with a mill opening of 0,8 mm.
- f) Determine the batch mass and record. If it differs from the theoretical value by more than + 0,5 % or 1,5 %, discard the batch and remix.
- g) Sheet the batch to approximately 2,2 mm for preparing test slabs or to the appropriate thickness for preparing ISO ring test pieces in accordance with ISO 37.
- h) Condition the batch for 2 h to 24 h after mixing and prior to vulcanizing, if possible at standard temperature and humidity as defined in ISO 23529.

An example of a **mill mixing procedure for the final mixing** is given in a) to g) as follows.

		Duration (min)	Cumulative time (min)
a)	Set the mill opening to 1,5 mm.	_	_