INTERNATIONAL STANDARD

First edition 2015-10-01

Space systems — Space environment (natural and artificial) — Observed proton fluences over long duration at GEO and guidelines for selection of confidence level in statistical model of solar proton fluences

iTeh STANDARD PREVIEW Systèmes spatiaux — Environnement spatial (naturel et artificiel) — (stFluences de protons observées sur une longue durée au GEO et lignes directrices pour la sélection du niveau de confiance dans le modèle statistique des fluences de protons solaires

https://standards.iteh.ai/catalog/standards/sist/749d6ba9-0437-436c-9e2fae724dc2155f/iso-12208-2015

Reference number ISO 12208:2015(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 12208:2015</u> https://standards.iteh.ai/catalog/standards/sist/749d6ba9-0437-436c-9e2fae724dc2155f/iso-12208-2015

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Fore	eword	iv	
Intro	oduction	v	
1	Scope	1	
2	Terms and definitions		
3	Symbols and abbreviated terms	2	
4	 Principles of the method (see Reference [3]) 4.1 Cumulative fluence 4.2 Confidence level 4.3 Archives of observed energetic protons in GEO 4.4 Remarks 	2 2 3 3 3 3	
5	Guidelines for selection of a confidence level in a statistical model of solar proton fluences		
Anno	ex A (informative) Example of estimation and selection	5	
Bibli	iography	9	

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 12208:2015</u> https://standards.iteh.ai/catalog/standards/sist/749d6ba9-0437-436c-9e2fae724dc2155f/iso-12208-2015

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ASO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 20, *Aircraft and space vehicles*, Subcommittee SC 14, *Space systems and operations*.

This first edition of ISO 12208: cancels and replaces ISO/TS 12208:2011437-436c-9e2fae724dc2155f/iso-12208-2015

Introduction

This International Standard is intended for use in the engineering community.

It is well known that solar energetic protons (SEPs) damage spacecraft systems, i.e. electronics and solar cells, through ionization and/or atomic displacement processes. This results in single-event upsets and latch-ups in electronics, and output degradation of solar cells.

Solar cells of spacecraft are obviously one of the key components of spacecraft systems. Degradation of solar cells by energetic protons is unavoidable and causes power loss in spacecraft systems. Estimation of cell degradation is crucial to the spacecraft's long mission life in geosynchronous earth orbit (GEO). Therefore, an estimation of SEP fluences in GEO is needed when designing solar cell panels.

Solar cell engineers use a statistical model, the jet propulsion laboratory (JPL) fluence model for example, for estimating solar cell degradation. However, with regard to solar cell degradation, a statistical model predicts higher SEP fluences than the values actually experienced by spacecraft in GEO, especially seven years after the launch. Nowadays, spacecraft manufacturers are very conscious of minimum cost design of spacecraft because the lifetime of spacecraft is becoming longer (15 years to 18 years) and the cost of manufacturing spacecraft is increasing. Therefore, the aerospace industry requires a more accurate SEP fluence model for a more realistic design of solar cells.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12208:2015 https://standards.iteh.ai/catalog/standards/sist/749d6ba9-0437-436c-9e2fae724dc2155f/iso-12208-2015

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12208:2015 https://standards.iteh.ai/catalog/standards/sist/749d6ba9-0437-436c-9e2fae724dc2155f/iso-12208-2015

Space systems — Space environment (natural and artificial) — Observed proton fluences over long duration at GEO and guidelines for selection of confidence level in statistical model of solar proton fluences

1 Scope

This International Standard describes a method to estimate energetic proton fluences in geosynchronous earth orbit (GEO) over a long duration (beyond the 11-year solar cycle), and presents guidelines for the selection of a confidence level in a model of solar proton fluences to estimate solar cell degradation.

Many of the proton data observed in GEO are archived, for example from GMS (Japan), METEOSAT (ESA) and GOES (USA). This method is a direct integration of these fluence data (or the observed data over 11 years is used periodically).

As a result, the confidence level can be selected from a model of solar proton fluences.

This International Standard is an engineering-oriented method used for specific purposes such as estimating solar panel degradation. iTeh STANDARD PREVIEW

Terms and definitions(standards.iteh.ai) 2

For the purposes of this document, the following terms and definitions apply.

https://standards.iteh.ai/catalog/standards/sist/749d6ba9-0437-436c-9e2f-2.1

confidence level

level used to indicate the reliability of a cumulative fluence estimation

2.2

extremely rare event

solar energetic proton (SEP) event that occurs about once in a solar cycle and whose fluence dominates that for the entire cycle

ae724dc2155f/iso-12208-2015

Note 1 to entry: Examples are those which took place in August 1972, October 1989 and July 2000.

2.3

flux

number of particles passing through a specific unit area per unit time

2.4

fluence time-integrated flux

2.5

n-year fluence

fluence during a mission of *n* years duration

ISO 12208:2015(E)

3 Symbols and abbreviated terms

EOL	end of life
ESA	European Space Agency
JPL	Jet Propulsion Laboratory
METEOSAT	Meteorological Satellite
GEO	Geosynchronous Earth Orbit
GMS	Geosynchronous Meteorological Satellite
GOES	Geostationary Operational Environmental Satellite
RDC	relative damage coefficients
SEP	solar energetic proton
SSN	sun spot number

4 **Principles of the method** (see Reference [3])

4.1 Cumulative fluence iTeh STANDARD PREVIEW

The *n*-year fluence for a given mission life of *n*-years is shown in Figure 1 and estimated as follows.

- a) The *n*-year fluence is calculated by integrating observed daily fluences for *n*-years from archives. The start day for integration is January 1st in the first year (defined as A). The integration windows are shifted each day from January 2nd in the first year to December 31th in *n*-years later (defined as B, C ... Z). These are possible fluences that a spacecraft might experience during its mission life (see A, B, C ... Z in Figure 1).
- b) The maximum of the *n*-year fluences, $F_{max}(t)$, for the *n*-year mission life is obtained. Maximum fluence of an *n*-year mission is calculated using Formula (1):

$$F(t) = \max(A, B, C...Z)$$
⁽¹⁾

 $F_{max}(t) = \max \left(A, B, C \dots Z \right)$

Figure 1 — Cumulative fluencies (the data period is larger than 1,2 solar cycle)

4.2 Confidence level

The confidence level for a given mission duration of *n*-years is shown in Figure 2 and estimated as follows.

- a) A set of *n*-year fluences is made by integrating proton flux data while shifting the integration window daily.
- b) Occurrence distribution, f(*F*), of the data set of fluences, *F*, is built. The occurrence distribution of fluences is defined as the histogram of fluences *F*.
- c) Distribution is normalized to have unity when integrated over maximum fluence, F_{max} .
- d) Distribution from 0 to *F*′ is integrated to obtain the confidence level, *p*, for an *n*-year mission life.

NOTE The confidence level reaches 100 % because this method does not include extremely rare events that did not happen during the period.

Key

- X fluence, F
- Y1 occurrence
- Y2 confidence level, *p*

Figure 2 — Confidence level

4.3 Archives of observed energetic protons in GEO

The following are examples of archives and their longitudes in GEO:

- a) GMS (E140);
- b) METEOSAT (E63, E0); https://www.spenvis.oma.be/intro.php (European Space Agency, SPENVIS);
- c) GOES (W75, W135); <u>http://spidr.ngdc.noaa.gov/spidr/</u> (National Ocean and Atmospheric Administration).

4.4 Remarks

If it is necessary to adjust the magnitude and probability to exceeding the given estimates (the biggest event on September to October 1989 events which is included in this IS), the historical analyses results described in References [1] and [2] may be used.