

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEXCHAPOCHAR OPTAHU3ALUM TO CTAHCAPTU3ALUM ORGANISATION INTERNATIONALE DE NORMALISATION

Strontium chromate pigments for paints

First edition – 1972-06-15 iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 2040:1972 https://standards.iteh.ai/catalog/standards/sist/aede329e-e36e-466d-bb7a-96b7902b13f9/iso-2040-1972

UDC 667.622 : 661.843

Ref. No. ISO 2040-1972 (E)

Descriptors : chemical analysis, chromates, materials specifications, pigments, strontium compounds, tests.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

ISO/TC 35, Paints and varnishes.

International Standard ISO 2040 was drawn up by Technical Committee VIEW (standards.iteh.ai)

It was approved in February 1971 by the Member Bodies of the following ISO 2040:1972 countries:

https://standards.iteh.ai/catalog/standards/sist/aede329e-e36e-466d-bb7a-

Egypt, Arab Rep. of France Germany India Israel

Italy Netherlands Poland Portugal South Africa, Rep. of

96b79**Spain**f9/iso-2040-1972 Sweden Switzerland United Kingdom

No Member Body expressed disapproval of the document.

© International Organization for Standardization, 1972 •

Printed in Switzerland

Strontium chromate pigments for paints

1 SCOPE AND FIELD OF APPLICATION

This International Standard lays down the requirements and test methods for strontium chromate pigments of approximate composition $SrCrO_4$ suitable for use in paints and corrosion-inhibiting coatings. **III ch STANDARD**

3 REQUIRED CHARACTERISTICS AND THEIR TOLERANCES

Strontium chromate pigments for paints shall have the characteristics shown in the Table below.

2 REFERENCES

(standards.ite sampi) NG

ISO/R 787, General methods of test for pigments. ISO/R 842, Sampling raw materials for paints and varnishes. ISO 2040:1972accordance with ISO/R 842. https://standards.iteh.ai/catalog/standards/sist/aede329e-e36e-466d-bb7a-

96b7902b13f9/iso-2040-1972

Characteristic ¹⁾		Requirement	Test method
Strontium content	% SrO	min. 48	clause 5.1
Total chromate content	% CrO ₃	min. 46	clause 5.2
Water-soluble chloride content	% CI	max. 0.1	clause 5.3.2
Water-soluble nitrate content	% NO ₃	max. 0.1	clause 5.3.3 or 5.3.4
Chromate content in 100 ml of extract from 10 g of pigment	g CrO₃/100 ml	0.04 to 0.1	clause 5.3.5
Volatile matter at 105 $^\circ { m C}$	%	max. 1.0	ISO/R 787, Part II
Oil absorption value, com- pared with value agreed between the interested parties		within ± 15 %	ISO/R 787, Part V
Residue on sieve (63 μm)	oil method %	max. 0.5	ISO/R 787, Part VI
	water method %	max. 0.3	ISO/R 787, Part VII

TABLE - Required characteristics and their tolerances

PREVIEW

1) If a value for density is agreed between the interested parties, the method for determination shall be that given in ISO/R 787, Part X.

5 METHODS OF TEST

All reagents used shall be of recognized analytical reagent quality. Distilled water or water of at least equivalent purity shall be used.

5.1 Determination of strontium content

5.1.1 Reagents

- 1) Acetic acid, 10 % (V/V) solution.
- 2) Hydrochloric acid, d = 1.18.
- 3) Sulphuric acid, 50 g/l solution.
- 4) Sulphamic acid.
- 5) Ethanol, 95 % (V/V).

5.1.2 Apparatus

Sintered silica crucible, porosity P 16 (maximum pore size 10 to $16 \ \mu$ m).

5.1.3 Procedure

5.1.3.1 Test portion

Weigh, to the nearest 0.1 mg, about 0.25 g of the sample.

5.1.3.2 Determination

Transfer the test portion into a 500 ml glass-stoppered al flask. Add 50 ml of acetic acid (1) and shake or stir for

flask. Add 50 ml of acetic acid (1) and snake or still for Calculate the total chromate content as a percentage by 1 h at room temperature in such a manner that the pigment SO 2 mass, expressed as CrO₃, by the formula

is kept in continuous suspension without increasing the standards/sist/aede329e-e36 $3:33 \times 10^{-7}$ temperature of the extracting liquid. 96b7902b13f9/iso-2040-1972 m

Filter the solution through an ash-free close-textured filter paper until a perfectly clear filtrate is obtained. Wash the residue on the filter with two 12.5 ml portions of acetic acid (1), combining the filtrate and washings. Add 2.5 ml of hydrochloric acid (2) and 70 ml of ethanol (5) and boil until the volume is reduced to about 35 ml.

Add 10 ml of ethanol (5) and 1.5 g of sulphamic acid (4) and heat the solution to near boiling. Allow to stand on a hot-water bath for 1 h with occasional stirring.

Allow the precipitate so formed to settle at room temperature. When the supernatant liquid is clear and the contents of the beaker cool, filter through the tared sintered silica crucible (5.1.2). Wash the precipitate with a mixture of 9 parts of ethanol (5) and 1 part of sulphuric acid solution (3) until the filtrate is colourless. Ignite the crucible at 800 $^{\circ}$ C for 30 min, cool in a desiccator and weigh.

5.1.4 Expression of results

Calculate the strontium content as a percentage by mass, expressed as SrO, by the formula

$$\frac{56.416 \times m_1}{m_0}$$

where

 m_0 is the mass, in grams, of the test portion;

 m_1 is the mass, in grams, of residue.

Report the result to one decimal place.

5.2 Determination of total chromate content

5.2.1 Reagents

1) Sodium thiosulphate, 0.1 N standard volumetric solution.

- 2) Starch solution, 1 % (m/m).
- 3) Hydrochloric acid, 2 N.
- 4) Potassium iodide, 1 M solution.
- 5) Sodium hydrogen carbonate.
- 5.2.2 Procedure
- 5.2.2.1 Test portion

Weigh, to the nearest 0.1 mg, about 0.25 g of the sample.

5.2.2.2 Determination

Dissolve the test portion in 30 ml of hydrochloric acid (3), in a conical stoppered flask. Make up to 100 ml with water, and add 2 gof sodium hydrogen carbonate (5). Add 10 ml of potassium iodide solution (4) and allow the flask to stand for 5 min in the dark. Afterwards, titrate with sodium thiosulphate solution (1). Towards the end of the titration add 5 ml of starch solution (2) as indicator and titrate until the colour changes to green or blue-

green. glass-stoppered **25.2.3** *Expression of results*

2b13f9/iso-2040-1972 m where

V is the volume, in millilitres, of 0.1 N sodium thiosulphate solution required;

 \mathcal{T} is the normality of the sodium thiosulphate solution;

m is the mass, in grams, of the test portion.

Report the result to one decimal place.

5.3 Determination of water-soluble chloride and nitrate contents, and water-soluble chromate content

The aqueous extract prepared according to 5.3.1 is used for the determination of

a) water-soluble chloride and nitrate contents;

b) water-soluble chromate content.

For the water-soluble nitrate content, two methods are provided:

Method A (5.3.3) for use when it is only required to determine whether the content is above or below the specified limit of 0.1%;

Method B (5.3.4) for use when a precise determination of the content is required.

5.3.1 Preparation of aqueous extract

5.3.1.1 Apparatus

Mechanical agitator or stirrer.

5.3.1.2 Procedure

5.3.1.2.1 Test portion

Weigh 30 ± 0.1 g of the sample in a chemically resistant glass flask.

5.3.1.2.2 Preparation

Agitate the test portion with 300 ml of water for 1 h at room temperature in such a manner that the pigment is kept in continuous suspension without increasing the temperature of the water. Filter the mixture and reserve the perfectly clear filtrate for the determinations according to 5.3.2 to 5.3.5.

5.3.2 Determination of water-soluble chloride content

5.3.2.1 Reagents

- 1) Potassium chromate, 50 g/l solution.
- 2) Silver nitrate, 0.1 N standard volumetric solution.

5.3.2.2 Procedure

Take 100 ml of the clear aqueous extract (5.3.1) and add 1 ml of potassium chromate solution (1). Titrate the solution with silver nitrate solution (2), slowly and with S.ILC vigorous shaking, until a faint reddish brown colour persists.

Carry out a blank determination by adding 15001000:1972 potassium chromate solution/(1) to 100 ml of water and sist 5-3.3.2 Apparatus - bb7atitrating with silver nitrate solution (2) until the colour 2040-1172 Distillation apparatus. matches that of the previous titration, making due 2) Nessler cylinders, 50 ml. allowance for any opalescence or turbidity.

NOTE - Alternatively, the end point of the titration may be determined by potentiometric indication.

5.3.2.3 Expression of results

Calculate the water-soluble chloride content as a percentage by mass, expressed as CI, by the formula

$$0.0354 (V_1 - V_0)$$

where

 V_0 is the volume, in millilitres, of 0.1 N silver nitrate solution required in the blank determination;

 V_1 is the volume, in millilitres, of 0.1 N silver nitrate solution required by the test portion.

Report the result to two decimal places.

5.3.3 Determination of water-soluble nitrate content -Method A

5.3.3.1 Reagents

- 1) Hydrochloric acid, d = 1.18.
- 2) Sodium hydroxide solution, 200 g/l.
- 3) Ammonium chloride solution, 17.2 mg/l.

4) Devarda's alloy, powdered.

5) Ammonia-free water.

NOTE - Ammonia-free water may be prepared by redistilling approximately 500 ml of distilled water to which has been added 1 g of anhydrous sodium carbonate and 1 g of potassium permanganate. Reject the first 100 ml of distillate and then collect about 300 ml.

6) Nessler's reagent, prepared by either of the following methods:

a) Dissolve 5 g of potassium iodide in 3.5 ml of water. Add cold saturated mercury(II) chloride (HgCl₂) solution, while stirring, until a faint red precipitate is formed. With continued stirring add 40 ml of 50 % potassium hydroxide solution, dilute to 100 ml with water, mix well, allow to settle, decant the clear supernatant liquid and store it in the dark.

or

b) Dissolve 3.5 g of potassium iodide and 1.25 g of mercury(II) chloride in 80 ml of water. Add cold saturated mercury(II) chloride solution, while stirring, until a slight red precipitate remains, then add 12 g of sodium hydroxide, stir until dissolved, and finally add a little more saturated mercury(II) chloride solution and dilute to 100 ml with water. Stir occasionally during several days, allow to stand, and use the clear supernatant liquid for the test.

5.3.3.3 Procedure

Place 50 ml of the clear aqueous extract (5.3.1) into the distillation flask and dilute to 150 ml with ammonia-free water (5). Add 3 g of Devarda's alloy (4) and 30 ml of sodium hydroxide solution (2) and close the apparatus at once. Place 2 ml of hydrochloric acid (1) and 30 ml of ammonia-free water (5) in the receiver. Warm the flask gently until the reaction starts and then allow the reaction to proceed gently for about half an hour. Then distil about 70 ml of liquid, the receiver being kept cool with running water. Make up the distillate to 250 ml with ammonia-free water (5) and transfer 5 ml to a Nessler cylinder. Dilute to 50 ml with ammonia-free water (5). Transfer 5 ml of ammonium chloride solution (3) (equivalent to 0.1 % NO₃) into a similar Nessler cylinder and dilute to 50 ml with ammonia-free water. Add 1 ml of Nessler's reagent (6) to each cylinder and mix each thoroughly. Allow both cylinders to stand for 5 min and compare the intensity of colour of the two solutions.

5.3.3.4 Expression of results

Report the result as either greater than or less than 0.1 % NO_3 .

5.3.4 Determination of water-soluble nitrate content – Method B

5.3.4.1 Principle

The nitrate present in the test solution is used to nitrate salicylic acid in sulphuric acid medium. The nitro-compound formed is of an intense yellow colour in alkaline solution, and the colour is measured spectrophotometrically at a wavelength of 410 nm.

5.3.4.2 Reagents

- 1) Sulphuric acid, d = 1.84.
- 2) Sulphuric acid, 5 N.
- 3) Ethanol, 95 % (V/V).
- 4) Sodium salicylate solution, 5 g/l, freshly prepared.
- 5) Sodium hydroxide solution, 300 g/l.
- 6) Sodium hydroxide solution, 4 N.

7) **Potassium nitrate**, dried at 120 °C and cooled in a desiccator.

5.3.4.3 Apparatus

1) Spectrophotometer suitable for measurements at a $\frac{a}{1SO 20402992}$ when 10 ml of solution have been used; wavelength of 410 nm.

- 2) 10 mm cells for use with the spectrophotometer 57902b13f9/isc5-3:4:5) 972
- 3) pH meter.
- 4) Volumetric flasks, of capacity 50 ml, 100 ml, 250 ml and 500 ml.

5.3.4.4 Preparation of calibration graph

Standard solution I. Weigh 163 \pm 0.1 mg of potassium nitrate (7), dissolve it in water in a 100 ml volumetric flask, make up to the mark and mix well.

Standard solution II. Dilute 10 ml of standard solution I to a volume of 500 ml.

Measure 2, 4, 6, 8 and 10 ml of standard solution II (corresponding to 0.04, 0.08, 0.12, 0.16 and 0.2 mg of NO₃ respectively) into separate 100 ml glass beakers.

Treat each beaker as follows : Add 1 ml of sodium salicylate solution (4), evaporate to dryness on a water bath and allow to cool in a desiccator. Moisten the whole of the dried residue with 1 ml of sulphuric acid (1) and allow to stand in the desiccator for 10 min. Afterwards, wash the contents into 50 ml volumetric flasks with water, add 10 ml of sodium hydroxide solution (5) and cool to room temperature. Make up to the mark with water and mix well. Determine and record the optical density at 410 nm in a 10 mm cell against a water blank.

Construct a graph of optical density against milligrams of NO_3 .

5.3.4.5 Procedure

Place 50 ml of clear aqueous extract (5.3.1) into a 250 ml glass beaker and add 5 ml of sulphuric acid (2) and 2 ml of ethanol (3). Warm the solution until the chromate is reduced as indicated by a change of colour to green. Boil the solution vigorously to drive off organic matter, taking care to avoid losses by splashing, cool and add sodium hydroxide solution (6) until just alkaline. Cool again and adjust the pH to 8.0 ± 0.5 measured by the pH meter. Filter through filter paper and wash with hot water, collecting the filtrate and washings. Cool, make up the volume to 250 ml and mix.

Transfer 10 ml (see Note) of this solution to a 100 ml glass beaker. Add 1 ml of sodium salicylate solution (4) and proceed as described in 5.3.4.4 including the determination of the optical density at 410 nm.

From the known optical density of the test solution, determine from the calibration graph the corresponding mass of nitrate in milligrams.

NOTE - If the nitrate content is more than 0.1 %, carry out a second determination, using 5 ml of solution.

iTeh STANDARY Expression of results

Calculate the water-soluble nitrate content as a percentage (standards, standards, sta

where a is the mass, in milligrams, of NO₃ corresponding to the optical density of the test solution.

5.3.5 Determination of water-soluble chromate content

5.3.5.1 Reagents

- 1) Hydrochloric acid, 2 N.
- 2) Potassium iodide solution, 1 M.
- 3) Sodium thiosulphate, 0.1 N standard volumetric solution.
- 4) Starch solution, 1 % (m/m).
- 5) Sodium hydrogen carbonate.

5.3.5.2 Procedure

Transfer 50 ml of clear aqueous extract (5.3.1) to a conical stoppered flask. Add 50 ml of water and 2g of sodium hydrogen carbonate (5), followed by 30 ml of hydrochloric acid (1).

Then add 10 ml of potassium iodide solution (2) and allow the flask to stand for 5 min in the dark. Afterwards, titrate with sodium thiosulphate solution (3). Towards the end of the titration add 5 ml of starch solution (4) as indicator and titrate until the colour changes to green. 5.3.5.3 Expression of results

Calculate the water-soluble chromate content in grams per 100 ml, expressed as CrO_3 , by the formula

0.066 7 \times V \times T

where

V is the volume, in millilitres, of sodium thiosulphate solution required;

T is the normality of the sodium thiosulphate solution.

Report the result to two decimal places.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 2040:1972</u> https://standards.iteh.ai/catalog/standards/sist/aede329e-e36e-466d-bb7a-96b7902b13f9/iso-2040-1972

iTeh STANDARD PREVIEW (standards.iteh.ai) This page intentionally left blank

<u>ISO 2040:1972</u>

https://standards.iteh.ai/catalog/standards/sist/aede329e-e36e-466d-bb7a-96b7902b13f9/iso-2040-1972