INTERNATIONAL STANDARD ISO 20498-2 First edition 2017-05 ## Traditional Chinese medicine — Computerized tongue image analysis system — Part 2: **Light environment** iTeh STMédecine traditionnelle chinoise + Système d'analyse d'images numérisées de la langue — Partie 2: Environnement lumineux ISO 20498-2:2017 https://standards.iteh.ai/catalog/standards/sist/3128f052-c526-4b75-a159-016f655ecde1/iso-20498-2-2017 # iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 20498-2:2017 https://standards.iteh.ai/catalog/standards/sist/3128f052-c526-4b75-a159-016f655ecde1/iso-20498-2-2017 #### COPYRIGHT PROTECTED DOCUMENT © ISO 2017, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Co | Corewordiv | | | | | |------|------------------------|--|----|--|--| | Fore | word | | iv | | | | 1 | Scop | pe | 1 | | | | 2 | Normative references | | | | | | 3 | Terms and definitions | | | | | | 4 | Technical requirements | | | | | | | 4.1 | Illuminance | 1 | | | | | 4.2 | Colour temperature | 2 | | | | | 4.3 | Colour rendering index | 2 | | | | | 4.4 | Illumination distribution | 2 | | | | | 4.5 | Irradiance | | | | | | 4.6 | Ultraviolet irradiance | 2 | | | | 5 | Test methods | | | | | | | 5.1 | Measuring points on effective surface area | 2 | | | | | 5.2 | Illuminance | 3 | | | | | 5.3 | Colour temperature | 3 | | | | | 5.4 | Colour rendering index | | | | | | 5.5 | Illumination distribution | | | | | | 5.6 | Irradiance | 3 | | | | | 5.7 | Ultraviolet irradiance | 4 | | | | Ann | ex A (in | formative) Spectral weighting function for assessing ultraviolet hazards | 5 | | | | Bibl | iogranl | v (standards.iteh.ai) | 6 | | | ISO 20498-2:2017 https://standards.iteh.ai/catalog/standards/sist/3128f052-c526-4b75-a159-016f655ecde1/iso-20498-2-2017 #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. (standards.iteh.ai) This document was prepared by Technical Committee ISO/TC 249, *Traditional Chinese medicine*. ISO 20498-2:2017 A list of all the parts in the ISO/20498 series/can be found on the ISO-website 75-a159-016655 ecde 1/iso-20498-2-2017 ## Traditional Chinese medicine — Computerized tongue image analysis system — #### Part 2: ## **Light environment** #### 1 Scope This document specifies the light environment necessary for the functioning of a computerized tongue image analysis system (CTIS). This document does not include the electrical safety and biocompatibility of the lighting component. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. CIE 013.3-1995, Method of measuring and specifying colour rendering properties of light sources (Standards.iteh.ai) #### 3 Terms and definitions ISO 20498-2:2017 For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp #### 3.1 #### effective surface area surface on which the patient rests according to the intended position Note 1 to entry: The area can be specified in the accompanying documents. #### 3.2 #### light environment optical conditions on effective surface area Note 1 to entry: This includes illuminance, colour temperature, colour rendering index, illumination distribution, irradiance and ultraviolet irradiance. #### 4 Technical requirements #### 4.1 Illuminance Illuminance should be between 500 lx and 13 000 lx. #### Colour temperature 4.2 Colour temperature should be between 3 000 K and 7 000 K. #### 4.3 Colour rendering index Colour rendering index should be more than 90. #### 4.4 Illumination distribution The relative illumination distribution on the effective surface area shall comply with the following condition: the ratio of illuminance_{min} to illuminance_{max} shall be more than 0,9. #### 4.5 Irradiance For the spectral region 300 nm to 2 500 nm, the total irradiance shall not exceed 350 W⋅m⁻². NOTE 300 nm to 2 500 nm is the main spectral region which can produce thermal risk to retinal and skin. #### Ultraviolet irradiance For the spectral region 200 nm to 400 nm, the effective ultraviolet irradiance shall not exceed 0.008 W·m⁻². iTeh STANDARD PREVIEW ### (standards.iteh.ai) #### Test methods ISO 20498-2:2017 #### 5.1 Measuring points on effective surface area rds/sist/3128f052-c526-4b75-a159- 016f655ecde1/iso-20498-2-2017 The measuring area shall be divided into a number of congruent rectangular or square partial surfaces according to Figure 1. The grid is centred to cover the whole effective surface area. The measuring points are identical with the centres of the partial surfaces. The distances between the measuring points on the grid shall not exceed 3 cm. NOTE m and n are the number of partial surfaces in the direction of length a and width b. ## iTeh STANDARD PREVIEW Figure 1 — Example of a measuring grid (Standar us. Item. al) #### 5.2 Illuminance ISO 20498-2:2017 https://standards.iteh.ai/catalog/standards/sist/3128f052-c526-4b75-a159- Select the measuring points described in 5.1. Use an Illuminance metre to measure the illuminance on each point. Every test value should comply with 4.1. #### **5.3** Colour temperature Select the measuring points described in 5.1. Every test value should comply with 4.2. #### 5.4 Colour rendering index Select the measuring points described in 5.1 and measure according to the methods in CIE 013.3-1995. Every test value should comply with 4.3. #### 5.5 Illumination distribution Select the measuring points described in $\underline{5.1}$. Use an illuminance metre to measure the illuminance on each point. Calculate the ratio of illuminance_{min} to illuminance_{max}. The value should comply with $\underline{4.4}$. #### 5.6 Irradiance Select the maximum illuminance point described in 5.1. Measure the total irradiance spectral region 300 nm to 2 500 nm with a sensor whose diameter is no more than 3 cm. The test value should comply with 4.5. #### 5.7 Ultraviolet irradiance Select the maximum illuminance point described in <u>5.1</u>. Measure the irradiance spectral region 200 nm to 400 nm as $E(\lambda)$ (unit is W·m⁻²·nm⁻¹); effective ultraviolet irradiance is defined using <u>Formula (1)</u>: $$\sum_{200}^{400} E(\lambda) \cdot S_{UV}(\lambda) \cdot \Delta \lambda \tag{1}$$ where $\Delta\lambda$ is the bandwidth in nm; $S_{UV}(\lambda)$ is actinic ultraviolet hazard weighting function and its spectral values are shown in Annex A. The test value should comply with 4.6. # iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 20498-2:2017 https://standards.iteh.ai/catalog/standards/sist/3128f052-c526-4b75-a159-016f655ecde1/iso-20498-2-2017 ## Annex A (informative) ## Spectral weighting function for assessing ultraviolet hazards Table A.1 — Spectral weighting function for assessing ultraviolet hazards | Wavelength (λ)/nm ^a | $S_{ m UV}(\lambda)$ | Wavelength (λ)/nm | $S_{ m UV}(\lambda)$ | |--------------------------------|------------------------------------|------------------------------|----------------------| | 200 | 0,030 | 313b | 0,006 | | 205 | 0,051 | 315 | 0,003 | | 210 | 0,075 | 316 | 0,002 4 | | 215 | 0,095 | 317 | 0,002 0 | | 220 | 0,120 | 318 | 0,001 6 | | 225 | 0,150 | 319 | 0,001 2 | | 230 | 0,190 | 320 | 0,001 0 | | 235 | 0,240 | 322 | 0,000 67 | | 240 | OL CT0300 A DI | DD 1323 1737 | 0,000 54 | | 245 | 0,360 DAN | 325 | 0,000 50 | | 250 | (steasodards. | iteh.ai328 | 0,000 44 | | 254b | 0,500 | 330 | 0,000 41 | | 255 | 0,52 <mark>0SO 20498-2:</mark> | 2 <u>017</u> 333b | 0,000 37 | | 260 https://st | andards.iteh.a/catalog/standards/s | ist/3128f052-c536-4b75-a159- | 0,000 34 | | 265 | 0,810 | 340 | 0,000 28 | | 270 | 1,000 | 345 | 0,000 24 | | 275 | 0,960 | 350 | 0,000 20 | | 280b | 0,880 | 355 | 0,000 16 | | 285 | 0,770 | 360 | 0,000 13 | | 290 | 0,640 | 365 ^b | 0,000 11 | | 295 | 0,540 | 370 | 0,000 093 | | 297b | 0,460 | 375 | 0,000 077 | | 300 | 0,300 | 380 | 0,000 064 | | 303b | 0,120 | 385 | 0,000 053 | | 305 | 0,060 | 390 | 0,000 044 | | 308 | 0,026 | 395 | 0,000 036 | | 310 | 0,015 | 400 | 0,000 030 | ^a Wavelengths chosen are representative; other values should be obtained by logarithmic interpolation at intermediate wavelengths. SOURCE: IEC 62471:2006, Table 4.1. b Emission lines of a mercury discharge spectrum.