INTERNATIONAL STANDARD

Second edition 2017-09

Soil quality — Determination of particle density

Qualité du sol — Détermination de la masse volumique des particules

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 11508:2017 https://standards.iteh.ai/catalog/standards/sist/619266bb-c8c5-40a4-9a4ba3b1b5a45854/iso-11508-2017

Reference number ISO 11508:2017(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11508:2017</u> https://standards.iteh.ai/catalog/standards/sist/619266bb-c8c5-40a4-9a4ba3b1b5a45854/iso-11508-2017

© ISO 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Foreword			iv	
Intro	ductio	n	v	
1	Scop	9		
2	Normative references			
3	Term	Terms and definitions		
4	Procedure			
	4.14.24.34.4	Fine soil (<2 mm diameter)	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
5 Anne Biblio	Test i x A (inf ograph	report iTen STANDARD PREVIEW formative) Density of water at different temperatures (standards.iten.ai)	5 6 9	

<u>ISO 11508:2017</u> https://standards.iteh.ai/catalog/standards/sist/619266bb-c8c5-40a4-9a4ba3b1b5a45854/iso-11508-2017

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee is ISO/TC 190, *Soil quality*, Subcommittee SC 3, *Chemical methods and soil characteristics*. ISO 11508:2017 https://standards.iteh.ai/catalog/standards/sist/619266bb-c8c5-40a4-9a4b-

This second edition cancels and replaces the first edition (ISO 11508:1998), which has been technically revised.

The main changes compared to the previous edition are as follows:

- a) the terms and definitions have been updated;
- b) a new subclause <u>4.3</u> "Unified reference temperature" was added;
- c) a new subclause <u>4.4</u> "Calculation of mean particle density" was added;
- d) Table 1, "Density of water...", was deleted under 4.1.4;
- e) a new <u>Annex A</u> "Density of water at different temperatures" was added;
- f) bibliographic references were added;
- g) editorial changes were made.

Introduction

This document specifies the particle density (ρ_s) which is used together with the dry bulk density (${}^b\rho_s$, see ISO 11272) for the calculation of the pore volume of a soil layer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11508:2017</u> https://standards.iteh.ai/catalog/standards/sist/619266bb-c8c5-40a4-9a4ba3b1b5a45854/iso-11508-2017

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11508:2017</u> https://standards.iteh.ai/catalog/standards/sist/619266bb-c8c5-40a4-9a4ba3b1b5a45854/iso-11508-2017

Soil quality — Determination of particle density

1 Scope

This document specifies two methods for the determination of particle density of soils calculated from the mass and the volume of soil particles.

The first method (4.1) is applicable to fine soil (<2 mm diameter) and the second method (4.2) is applicable to both porous and nonporous gravel and stones (>2 mm diameter).

The particle density can be used for the calculation of the proportion of solids and of the porosity of soil layers in combination with the procedure given in ISO 11272.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 565, Test sieves — Metal wire cloth, perforated metal plate and electroformed sheet — Nominal sizes of openings **iTeh STANDARD PREVIEW**

ISO 11461, Soil quality — Determination of soil water content as a volume fraction using coring sleeves — Gravimetric method

<u>ISO 11508:2017</u>

3 Terms and definitions itch.ai/catalog/standards/sist/619266bb-c8c5-40a4-9a4b-

a3b1b5a45854/iso-11508-2017

For the purposes of this document, the following terms and definition apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>
- IEC Electropedia: available at http://www.electropedia.org/

3.1

particle density

ratio of the total mass of oven-dry solid particles, e.g. minerals or organic matter, to the volume of these particles

Note 1 to entry: The volume comprises internal pores of soil particles but pore spaces between particles are excluded.

Note 2 to entry: The preferred SI unit of measurement is kilograms per cubic metre (kg \cdot m⁻³) but grams per cubic centimetre (g \cdot cm⁻³) is also very common. Note that x g \cdot cm⁻³ = 1 000 $\cdot x$ kg \cdot m⁻³.

4 Procedure

4.1 Fine soil (<2 mm diameter)

4.1.1 Principle

The mass of a portion of soil is determined by weighing. The volume of the soil is calculated from the mass and the density of water displaced by the sample in a pycnometer.

4.1.2 Apparatus

4.1.2.1 Thermometer, capable of measuring to an accuracy of 0,1 °C.

4.1.2.2 Pycnometer, preferably with a volume of 20 cm³ to 50 cm³, regularly calibrated glass flask fitted with a ground-glass stopper, which is pierced lengthways by a capillary opening.

4.1.2.3 Vacuum desiccator, with self-indicating silica gel or anhydrous calcium sulfate.

4.1.2.4 Laboratory balance, capable of weighing to an accuracy of 0,1 mg.

4.1.2.5 Sieve, conforming to ISO 565, aperture size 2 mm.

4.1.3 Sampling

Take a disturbed representative sample from the soil, pass it through a sieve (4.1.2.5), and dry it at room temperature. Determine the reference water content, *w*, of the air-dried soil in a subsample in accordance with ISO 11461.

4.1.4 Density determination

Weigh a clean, dry and calibrated pycnometer in air (m_0) . Add 10 g to 25 g of air-dried soil (4.1.3) and weigh the pycnometer with the soil (m_s) . Add distilled water to the pycnometer to approximately the half-full mark.

Wet and then de-aerate the soil sample in the pycnometer in a vacuum desiccator until there is no further escape of air. Fill the pycnometer completely with distilled, boiled and cooled (de-aerated) water in a weighing room maintained at constant temperature, and insert the stopper so that no air bubbles remain under the stopper and the capillary tube in the stopper is completely filled with water (hold the pycnometer at the neck only during this operation). Then carefully dry the pycnometer without warming it, using filter paper, and weigh it (m_{sw}).

During the procedure, take care to ensure that the capillary tube remains filled with water, and that the temperature does not change.

After weighing, read the temperature of the water to the nearest 0,1 °C and determine its density (ρ_w) from Table A.1.

Finally, remove the soil sample from the pycnometer and refill with deionized and degassed water of the same temperature as before, insert the stopper, thoroughly dry the outside with filter paper, and weigh it (m_w), taking care that the temperature remains the same as before.

4.1.5 Calculation

a) Calculate the air-dried mass of soil (m_d) from Formula (1):

$$m_{\rm d} = \frac{m_{\rm s} - m_0}{1 + w_{\rm s}} \tag{1}$$

where

- $m_{\rm s}$ is the mass of pycnometer plus air-dried soil sample, in g;
- m_0 is the mass of the empty pycnometer (pycnometer filled with air), in g;
- $w_{\rm s}$ is the water content of the air-dried soil sample.
- b) Calculate the soil particle density, ρ_s , in g/cm³, using Formula (2):

(2)

$$\rho_{\rm s} = \frac{m}{V} = \frac{\rho_{\rm w} \cdot m_{\rm d}}{\left(m_{\rm sw} - m_{\rm w}\right)} = \frac{\rho_{\rm w} \cdot m_{\rm d}}{m_{\rm d} + m_{\rm w} - m_{\rm sw}}$$

where

m is the mass, in g;

- *V* is the volume, in cm^3 ;
- $m_{\rm d}$ is the oven-dried mass of the soil sample, in g;
- $\rho_{\rm w}$ is the density of water at the temperature observed, in g/cm³ (see <u>Table A.1</u>);

 m_{sw} is the mass of pycnometer filled with soil and water, in g;

 $m_{\rm W}$ is the mass of pycnometer filled with water at the temperature observed, in g.

NOTE The standard deviation of particle density of fine soil usually varies between 0,02 g/cm³ to 0,03 g/cm³ for different personnel or different laboratories, respectively.

4.2 Gravel and stones (>2 mm diameter)

4.2.1 Apparatus

4.2.1.3

4.2.1.1 Laboratory balance, with thin wire attached to the weighing beam, from which a light frame can be suspended. The frame serves as a platform for a weighing dish with a small container so that both frame and dish can be immersed in a large container of water during weighing (see Figure 1).

4.2.1.2 Vacuum desiccator, with self-indicating desiccant.

https://standards.iteh.ai/catalog/standards/sist/619266bb-c8c5-40a4-9a4b-

a<u>3b1b5a45854/iso-11508-2017</u> **Thermometer,** capable of measuring to an accuracy of 0,1 °C.

4.2.2 Density determination

Weigh the weighing dish of the balance (m_0). Clean the gravel and stones (for example by shaking them with sodium hexametaphosphate solution), wash in water, and dry them at (105 ± 2) °C.

Place the gravel and stones in the small container of the dish and weigh both together (m_s). Then fill the small container with distilled, boiled and cooled water. Put this container in a vacuum desiccator and de-aerate twice for 10 min, allowing air to enter the desiccator between evacuations. Then put this container on the weighing dish and submerge dish with the container in a large container containing distilled, boiled and cooled water and carefully reweigh while the stones and gravel are suspended in the water (m_{sw}). Remove and discard the sample, clean the weighing dish with its container, and weigh it while it is submerged in water (m_w). Measure the temperature of the water and from <u>Table A.1</u> determine its density (ρ_w).