

Designation: D 5753 – 95^{€1}

Standard Guide for Planning and Conducting Borehole Geophysical Logging¹

This standard is issued under the fixed designation D 5753; the number immediately following the designation indicates the vear of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

 ϵ^1 Note—Paragraph 1.8 was added editorially in October 1998.

1. Scope

1.1 This guide covers the documentation and general procedures necessary to plan and conduct a geophysical log program as commonly applied to geologic, engineering, ground-water, and environmental (hereafter referred to as geotechnical) investigations. It is not intended to describe the specific or standard procedures for running each type of geophysical log and is limited to measurements in a single borehole. It is anticipated that standard guides will be developed for specific methods subsequent to this guide.

1.2 Surface or shallow-depth nuclear gages for measuring water content or soil density (that is, those typically thought of as construction quality assurance devices), measurements while drilling (MWD), cone penetrometer tests, and logging for petroleum or minerals are excluded.

1.3 Borehole geophysical techniques yield direct and indirect measurements with depth of the (1) physical and chemical properties of the rock matrix and fluid around the borehole, (2) fluid contained in the borehole, and (3) construction of the borehole.

1.4 To obtain detailed information on operating methods, publications (for example, 2, 5, 7, 18, 24, 29, 34, 35, and 36)² should be consulted. A limited amount of tutorial information is provided, but other publications listed herein, including a glossary of terms and general texts on the subject, should be consulted for more complete background information.

1.5 This guide provides an overview of the following: (1)the uses of single borehole geophysical methods, (2) general logging procedures, (3) documentation, (4) calibration, and (5)factors that can affect the quality of borehole geophysical logs and their subsequent interpretation. Log interpretation is very important, but specific methods are too diverse to be described in this guide.

1.6 Logging procedures must be adapted to meet the needs of a wide range of applications and stated in general terms so that flexibility or innovation are not suppressed.

1.7 This standard does not purport to address all of the safety and liability concerns, if any, (for example, lost or lodged probes and radioactive sources³) associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1.8 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word "Standard" in the title of this document means only that the document has been approved through the ASTM consensus process.

2. Referenced Documents

2.1 ASTM Standards:

- D 653 Terminology Relating to Soil, Rock, and Contained Fluids⁴
- D 5088 Practice for the Decontamination of Field Equipment Used at Non-Radioactive Waste Sites⁵
- D 5608 Practice for the Decontamination of Field Equipment Used at Low Level Radioactive Waste Sites

3. Terminology

3.1 Definitions—Definitions shall be in accordance with Terminology D 653.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This guide is under the jurisdiction of ASTM Committee D-18 on Soil and Rock and is the direct responsibility of Subcommittee D18.01 on Surface and Subsurface Characteristics.

Current edition approved July 15, 1995. Published October 1995.

² The boldface numbers in parentheses refer to the list of references at the end of this standard.

³ The use of radioactive materials required for some log measurements is regulated by federal, state, and local agencies. Specific requirements and restrictions must be addressed prior to their use.

⁴ Annual Book of ASTM Standards, Vol 04.08.

⁵ Annual Book of ASTM Standards, Vol 04.09.

∰ D 5753 – 95^{€1}

3.2 *Definitions of Terms Specific to This Standard:* Descriptions of Terms Specific to This Standard—Terms shall be in accordance with Ref (1).

4. Summary of Guide

4.1 This guide applies to borehole geophysical techniques that are commonly used in geotechnical investigations. This guide briefly describes the significance and use, apparatus, calibration and standardization, procedures and reports for planning and conducting borehole geophysical logging. These techniques are described briefly in Table 1 and their applications in Table 2.⁶

4.2 Many other logging techniques and applications are described in the textbooks in the reference list. There are a number of logging techniques with potential geotechnical applications that are either still in the developmental stage or have limited commercial availability. Some of these techniques and a reference on each are as follows: buried electrode direct current resistivity (37), deeply penetrating electromagnetic techniques (38), gravimeter (39), magnetic susceptibility (40), magnetometer, nuclear activation (41), dielectric constant (42), radar (50), deeply penetrating seismic (39), electrical polarizability (45), sequential fluid conductivity (46), and diameter (48). Many of the guidelines described in this guide also apply to the use of these newer techniques that are still in the research phase. Accepted practices should be followed at the present time for these techniques.

5. Significance and Use

5.1 An appropriately developed, documented, and executed guide is essential for the proper collection and application of borehole geophysical logs.

5.1.1 The benefits of its use include improving the following:

5.1.1.1 Selection of logging methods and equipment,

5.1.1.2 Log quality and reliability, and

5.1.1.3 Usefulness of the log data for subsequent display and interpretation.

5.1.2 This guide applies to commonly used logging methods (see Table 1 and Table 2) for geotechnical investigations.

5.1.3 It is essential that personnel (see 7.3.3) consult up-todate textbooks and reports on each of the logging techniques, applications, and interpretation methods. A partial list of selected publications is given at the end of this guide.

5.1.4 This guide is not meant to describe the specific or standard procedures for running each type of geophysical log and is limited to measurements in a single borehole.

6. Apparatus

6.1 *Geophysical Logging System*, including probes, cable, draw works, depth measurement system, interfaces and surface controls, and digital and analog recording equipment.

6.1.1 Logging probes, also called sondes or tools, enclose the sensors, sources, electronics for transmitting and receiving signals, and power supplies. 6.1.2 Logging cable routinely carries signals to and from the logging probe and supports the weight of the probe.

6.1.3 The draw works move the logging cable and probe up and down the borehole and provide the connection with the interfaces and surface controls.

6.1.4 The depth measurement system provides probe depth information for the interfaces and surface controls and recording systems.

6.1.5 The surface interfaces and controls provide some or all of the following: electrical connection, signal conditioning, power, and data transmission between the recording system and probe.

6.1.6 The recording system includes the digital recorder and an analog display or hard copy device.

7. Calibration and Standardization of Geophysical Logs

7.1 General:

7.1.1 National Institute of Standards and Technology (NIST) calibration and operating procedures do not exist for the borehole geophysical logging industry. However, calibration or standardization physical models are available (see Appendix X1).

7.1.2 Geophysical logs can be used in a qualitative (for example, comparative) or quantitative manner, depending on the project objectives. (For example, a gamma-gamma log can be used to indicate that one rock is more or less dense than another, or it can be expressed in density units.)

7.1.3 The calibration and standardization scope and frequency shall be sufficient for project objectives.

7.1.3.1 Calibration or standardization should be performed each time a logging probe is modified or repaired or at periodic intervals.

5 7.2 Calibration:

7.2.1 Calibration is the process of establishing values for log response. It can be accomplished with a representative physical model or laboratory analysis of representative samples. Calibration data values related to the physical properties (for example, porosity) may be recorded in units (for example, pulses/s or μ m/ft) that can be converted to apparent porosity units.

7.2.1.1 At least three, and preferably more, values are needed to establish a calibration curve, and the interface or contact between different values in the model should be recorded. Because of the variability in subsurface conditions, many more values are needed if sample analyses are used for calibration.

7.2.1.2 The statistical scatter in regression of core analysis against geophysical log values may be caused by the difference between the sample size and geophysical volume of investigation and may not represent measurement error.

7.2.2 *Physical Models*—A representative model simulates the chemical and physical composition of the rock and fluids to be measured.

7.2.2.1 Physical models include calibration pits, coils, resistors, rings, temperature baths, etc.

7.2.2.2 The calibration of nuclear probes should be performed in a physical model that is nearly infinite with respect to probe response.

⁶ The references indicated in these tables should be consulted for detailed information on each of these techniques and applications.

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn. Contact ASTM International (www.astm.org) for the latest information.

↓ D 5753 – 95^{€1}

TABLE 1 Common Geophysical Logs

				Typical Measuring				
Type of Log (References)	Varieties and Related Techniques	Properties Measured	Required Hole Conditions	Other Limitations	Units and Calibration or Standardization	Brief Probe Description		
Spontaneous potential (7, 8, 12)	differential	electric potential caused by salinity differences in borehole and interstitial fluids, streaming potentials	uncased hole filled with conductive fluid	salinity difference needed between borehole fluid and interstitial fluids; needs correction for other than NaCl fluids	mV; calibrated power supply	records natural voltages between electrode in well and another at surface		
Single-point conventional, resistance (7) differential		resistance of rock, saturating fluid, and borehole fluid	uncased hole filled with conductive fluid	not quantitative; hole diameter effects are significant	Ω; V- $Ω$ meter	constant current applied across lead electrode in well and another at surface of well		
Multi-electrode resistivity (7, 8, 13)	various normal focused, guard, lateral arrays	resistivity and saturating fluids	uncased hole filled with conductive fluid	reverses or provides incorrect values and thickness in thin beds	Ω -m; resistors across electrodes	current and potential electrodes in probe and remote current and potential electrodes		
Induction (10, 11)	various coil spacings	conductivity or resistivity of rock and saturating fluids	uncased hole or nonconductive casing; air or fluid filled	not suitable for high resistivities	mS or Ω-m; standard dry air zero check or conductive ring	transmitting coil(s) induce eddy currents in formation; receiving coil(s) measures induced voltage from secondary magnetic field		
Gamma (5, 7, 22)	gamma spectral (44)	gamma radiation from natural or artificial radioisotopes	any hole conditions	may be problem with very large hole, or several strings of casing and cement	pulses per second or API units; gamma source	scintillation crystal and photomultiplier tube measure gamma radiation		
Gamma-gamma (23, 24)	compensated (dual detector)	electron density	optimum results in uncased hole; can be calibrated for casing	severe hole- diameter effects; difficulty measuring formation density through casing or drill stem	gs/cm ³ ; Al, Mg, or Lucite blocks	scintillation crystal(s) shielded from radioactive source measure Compton scattered gamma		
Neutron (7, 14, 25)	epithermal, thermal, compensated sidewall, activation, pulsed	hydrogen content	optimum results in uncased hole; can be calibrated for casing	hole diameter and chemical effects	pulses/s or API units; calibration pit or plastic sleeve	crystal(s) or gas- filled tube(s) shielded from radioactive neutron source		
Acoustic velocity (5, 26, 27)	compensated, the open waveform, cement bond	compressional wave velocity or transit time, or compressional wave amplitude	fluid filled, uncased, 2 except cement bond	does not detect 7 secondary porosity; cement bond and wave form require expert analysis	velocity units, for example, ft/s or m/s or µs/ft; steel pipe	1 or more 50 transmitters and 2 or more receivers		
Acoustic televiewer (28, 7)	acoustic caliper	acoustic reflectivity of borehole wall	fluid filled, 3 to 16- in. diameter; problems in deviated holes	heavy mud or mud cake attenuate signal; very slow logging speed	orientated image- magnetometer must be checked	rotating transducer sends and receives high-frequency pulses		
Borehole video	axial or side view (radial)	visual image on tape	air or clean water; clean borehole wall	may need special cable	NA ^A	video camera and light source		
Caliper (29, 7)	oriented, 4-arm high-resolution, <i>x-y</i> or max-min bow spring	borehole or casing diameter	any conditions	deviated holes limit some types; significant resolution difference between tools	distance units, for example, in.; jig with holes or rings	1 to 4 retractable arms contact borehole wall		
Temperature (30, 31, 32)	differential	temperature of fluid near sensor	fluid filled	large variation in accuracy and resolution of tools	°C or °F; ice bath or constant temperature bath	thermistor or solid- state sensor		
Fluid conductivity (7)	fluid resistivity	most measure resistivity of fluid in hole	fluid filled	accuracy varies, requires temperature correction	μ S/cm or Ω -m; conductivity cell	ring electrodes in a tube		
Flow (12, 33, 7)	impellers, heat pulse	vertical velocity of fluid column	fluid filled	impellers require higher velocities. Needs to be centralized.	velocity units, for example, ft/min; lab flow column or log in casing	rotating impellers; thermistors detect heated water; other sensors measure tagged fluid.		
Deviation (4, 7, 47)	magnetic, gyroscopic, or mechanical	horizontal and vertical displacement of borehole	any conditions (see limitations)	magnetic methods orientation not valid in steel casing	degrees and depth units; orientation and inclination must be checked	various techniques to measure inclination and bearing of borehole		

 A NA = not applicable.

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn. Contact ASTM International (www.astm.org) for the latest information.

∰ D 5753 – 95^{€1}

Information Desired	Acc	ustic	Electric and Induction				Fluid Logs				Radioactiv	or Nuclea	r	Other Methods					
	Acoustic Tele- viewer	Acoustic Velocity, Δt, CBL, VDL, FWS	Induced Polari- zation	Multi- electrode Resistivity, Normal, Lateral, Micro Guard Resistivity	, Single- Point Resis- tance	Sponta- neous Poten- tial	Induc- tion (Conduc- tivity)	Flow Meter	Fluid I Resistivity Se	Fluid Impier	'emper- ature, Differ- ential 'emper- ature	Gamma- Gamma Density	Gamma	Neutron	Spectral Gamma	Borehole Video	Caliper	Casing Collar Locator	Deviatio
ithology and Correla	tion																		
Bed/aquifer thickness; correlation, structure	•	•		•	•	•	*					Δ	~	Δ	~	\$	\checkmark		
ithology depositional environment	?	•		•	٠	٠	*					Δ	√	Δ	\checkmark	\$	\checkmark		
Shale or clay content			٠	•		٠	*					Δ	√	Δ	√				
Bulk density Formation resistivity				•			*					Δ							
njection/production profiles				?			?		٥			Δ		Δ					
ermeability estimates		٠						۵	o				\checkmark						
Porosity (amount and type)	٠	•		•			*					Δ		Δ					
Vineral identification Potassium-uranium thorium content (KUT)			•									Δ			1				
Rock Structure Strike and dip of	•	-														\$			~
bedding racture detection (number of	٠	•		•	٠											\diamond	\checkmark		
fractures), RQD fracture orientation	٠															\diamond			√
and character Thin bed resolution	•			?	•											\diamond	\checkmark		
Fluid Parameters Sorehole fluid				(ht	to	S:/	/st	an	dar		5,1	tel	1.a	i)		•	•		
characteristics Fluid flow						•		; □	-							\diamond			
Formation water quality Moisture				• ?		0 •C	*					len							
content-water saturation				ŕ			1					Δ		Δ					
Temperature Water level and water table	ndard	? • s iteh		• talog/s	tand	ards/s	<u>AS:</u> ? ist/33		<u>)5753-9</u> Idf-93h		- - -	∆ 8d46-		2740		¢ astm-			
Borehole Parameters									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1,000						
Casing evaluation integrity, leaks, damage, screen location	•	•					?	•			•					•	~	t	
Deviation of																			\checkmark
borehole Diameter of borehole	٠																\checkmark		
Examination behind casing		•					*					Δ		Δ		•	,	,	
Location of debris in wells Well completion	• ?						*					Δ	./	Δ		*	~	\checkmark	
evaluation, for example, cement bond, seal location, grout location	r	-					×					4	v	4					

TABLE 2 Log Selection Chart for Geotechnical Applications Using Common Geophysical Logs^A

^A Required hole conditions: \blacksquare = cased fluid-filled hole, \blacklozenge = clear fluid or dry cased hole, \square = screened or open fluid-filled hole, \Diamond = clear fluid or dry open hole, \uparrow = steel casing only, Δ = active nuclear log to be run in stable holes, \star = open or nonconductive cased holes, dry or fluid filled, \checkmark = no restrictions, \bullet = open fluid-filled hole only, and ? = possible applications.

7.2.2.3 Some probes have internal devices such as resistors, but this does not substitute for checking the probe response in an environment that simulates borehole conditions, and the use of such devices is considered standardization.

7.2.2.4 *Calibration Facilities*—Commonly used calibration pits or models for use by anyone at the present time are listed

in Appendix X1 (14-18). The user should inquire concerning the present validity of any facility.

7.2.3 Sample Analyses:

7.2.3.1 Representative samples from boreholes in the project area that have been collected carefully and analyzed quantitatively also may be used to calibrate log response.