This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: C585–90 (Reapproved2004) Designation: C 585 – 09

Standard Practice for Inner and Outer Diameters of Rigid Thermal Insulation for Nominal Sizes of Pipe and Tubing (NPS System)¹

This standard is issued under the fixed designation C 585; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice is intended as a dimensional standard for preformed rigid thermal insulation for pipes and tubing.

1.2 This practice covers insulation supplied in cylindrical sections, usually split into half-sections, sections and lists recommended single layer inner and outer diameters of insulation having nominal wall thicknesses from $\frac{11}{2}$ to 5 in. (25(13) to 127) mm) to fit over standard sizes of pipe and tubing.

1.3 The values stated in inch-pound units are to be regarded as the standard. The values stated in SI units are provided for information only.

1.4 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

C 168 Terminology Relating to Thermal Insulation-Terminology Relating to Thermal Insulation

C 302 Test Method for Density and Dimensions of Preformed Pipe-Covering-Type Thermal Insulation

3. Terminology

3.1 Definitions—Definitions pertaining to insulation are defined in Terminology C 168.

4. Significance and Use

4.1 The purpose of this practice is to ensure satisfactory fit on standard sizes, to accommodate radial expansion of pipes and tubes which are heated after being insulated, and to minimize the number of insulation sizes and thicknesses to be manufactured and stocked.

4.2While insulation may be manufactured to these recommended dimensions, care should be exercised in attempting to nest layers of different materials, or layers supplied by different manufacturers. Individual manufacturing processes may operate at slightly different tolerances. While the product will fit the pipe, it may not readily nest as the outer layer between the different materials or with different manufacturers. Care should be exercised to determine these differences before specifying or ordering nesting sizes.

4.3Dimensions in accordance with this practice permit application of one thickness of pipe insulation over another (Nesting or Simplified Dimensional System), to obtain total thicknesses greater than those manufactured as single layer, or for multilayer application when desired.

4.2 While it is possible to manufacturer insulation to these recommended dimensions, exercise care in attempting to nest layers of different materials, or layers supplied by different manufacturers. Individual manufacturing processes will operate at slightly different tolerances. While the product will fit the pipe, it is possible that it will not readily nest as the outer layer between the different materials, or with a different manufacturer, and possibly the same manufacturer. Exercise care to determine these differences before specifying or ordering nesting sizes.

<u>4.3 The wide range of outer diameter dimensional tolerances will prevent many pipe and tube insulations from nesting for staggered joints or double layered applications, or both unless specified when ordered from the manufacturer, distributor, or fabricator.</u>

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This practice is under the jurisdiction of ASTM Committee C16 on Thermal Insulation and is the direct responsibility of Subcommittee C16.20 on Homogeneous Inorganic Thermal Insulations.

Current edition approved April 1, 2004:2009. Published May 2004:2009. Originally approved in 1966 to replace C 312 and C 521. Last previous edition approved in 19982004 as C 585 – 90 (1998). (2004).

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

C 585 – 09

4.4 Dimensions in accordance with this practice do not necessarily permit application of one thickness of pipe insulation over another (Nesting or Simplified Dimensional System) to obtain total thicknesses greater than those manufactured as single layer, or for multilayer application when desired.

5. Summary of Practice

5.1 This practice provides for each pipe and tubing sizes the inner diameters with tolerances for calcium silicate, cellular foam plastics, cellular glass, mineral fiber, and perlite preformed pipe and tubing insulation identified by Table 1 and Table 2.

FIG. 2 Outer Diameter Measurement Location

5.2 This practice provides for each pipe and tubing sizes the outer diameters for calcium silicate, cellular foam plastics, cellular glass, mineral fiber, and perlite preformed pipe and tubing insulation identified by Table 3, Table 4, Table 5 and Table 6.

5.3 This practice provides for a range of pipe and tubing sizes the outer diameter tolerances for calcium silicate and perlite preformed pipe and tubing insulation identified by Table 3a, Table 4a, Table 5a, and Table 6a.

5.4 This practice provides for a range of pipe and tubing sizes the outer diameters tolerances for cellular foam plastics, cellular glass, and mineral fiber, preformed pipe and tubing insulations identified by Table 3b, Table 4b, Table 5b and Table 6b.

5.5 This practice provides for each pipe and tubing sizes the inner and outer diameters for flexible elastomeric cellular preformed pipe and tubing insulation identified by Table 7, Table 8, Table 9, and Table 10.

5.6 This practice provides for a range of pipe and tubing sizes the inner and outer diameter tolerances for flexible elastomeric cellular preformed pipe and tubing insulation identified by Table 7a, Table 8a, Table 9a, and Table 10a.

6. Procedure Note1—Suggested tolerances are shown for information purposes only.

5.1

6.1 *Measurement*:

<u>56.1.1</u> Measurement of inner and outer diameters shall be made to the nearest $\frac{1}{32}$ in. (0.8 mm) using a steel tape or rule. <u>5.1.1.1</u>

FIG. 3 Hinged Section Measurement Locations

<u>6.1.1.1</u> Uneven Insulation Inner & Outer Circumferential Surfaces —Use Test Method C 302, Procedure C. This method must be used, to duplicate fit for application on a pipe and tubing and to determine the final outside diameter when an outer metal jacket system is snugly applied.

<u>6.1.1.2</u> Half Sections—The diameter reported for each half-section shall be the average of six measurements taken at three locations including two near the ends and one near the center (see Fig. 1a and Fig. 2a). Three of the six readings shall be taken in the longitudinal plane of the flat, cut surface: the other three shall each be twice a half-diameter in the longitudinal plane at right angles to that of the first three (see Fig. 1b and Fig. 2b).

5.1.1.2

<u>6.1.1.3</u> *Hinged Sections*—The diameter reported for each hinged section shall be the average of four measurements taken at both ends of the section (two per end) (see Fig. 3). The two measurements at each end shall be at right angles.

5.2

6.2 Recommended Inner Diameters :

<u>56</u>.2.1 Inner diameters and <u>suggested</u> tolerances for nominal sizes of insulation for pipe are shown in Table 1. Iron pipe in sizes for $\frac{4}{2}$, 5, 7-in. (113, 125, 175-mm), and larger odd-numbered diameters is not standard, but insulation for these is included for multi-layer purposes.

5.2.2Inner diameters and suggested tolerances for nominal sizes of tubing through 6 in. (150-mm) are shown in .

6.2.2 Inner diameters and tolerances for nominal sizes of tubing through 6 in. (150-mm) are shown in Table 2.

5.3

6.3 Recommended Outer Diameters :

<u>56</u>.3.1 Nominal outer diameters for nominal sizes of pipe are shown in Table 3 and Table 4 and tubing in Table 5 and Table 6. <u>It should be notedNote</u> that these values for both pipe and tubing are identical with iron pipe outer diameters as shown in Columns 2 and 3 of Table 3 and Table 4. Table 3, Table 4, Table 5, and Table 6 are for nesting purposes only. When product is to be nested, it shall be so stated on order.

5.3.2Suggested maximum outer diameters for nominal sizes of pipe are shown in Table 7 and Table 8 and tubing in Table 9 and Table 10. Table 7, Table 8, Table 9, and Table 10 are for jacketing purposes only.

5.4Approximate Insulation Wall Thickness:

5.4.1For information purposes, the wall thicknesses of pipe insulation obtained by subtracting inner diameters in Table 1 from corresponding outer diameters in Table 3 and Table 4, and dividing the results by two, are shown in Table 11are not for nesting purposes. When a pipe or tubing insulation product is to be nested, it shall be so stated on order.

6.3.2 There are no maximum outer diameter tables provided for jacketing purposes because of the wide spread variations in the outside diameters with their plus or minus tolerances.

NOTE 1—Previous versions of C 585 contained Tables for jacketing purposes only. These Tables have been removed from this practice with the inclusion of variable outside diameters caused by the addition of outer diameter (OD) tolerances. It is recommended in order to calculate the maximum circumferences for jacketing purposes, determine the pipe or tube insulation's maximum outer diameters from the manufacturer. An alternative measure

∰ C 585 – 09

Pipe			Inst	ulation, Nominal Thickness	ŧ	
Nominal Size	Pi n. pe Outside Diameter	-1	-11/2	-2	-21/2	-3
		mm	25	38	51	6425 mm
Names	mm	mm	<u>13 mm</u>	<u>19 mm</u>	<u>25 mm</u>	
15 15	76 21.3	89 24.6	102 47.5	114 62.2	127 75.4	
in.		2.05	4.00	Outer Diameter, in. ^A	7.0	010
<u> </u>	26.7	3.25 28.7 3.25	<u>4.38</u> <u>52.1</u> 4.38	<u> </u>	<u>7</u> -8 <u>7</u> -8 -7	- <u>9</u> 10 - <u>9</u> 10 -8-9
<u>25</u> 1	<u>33.4</u>	<u>36.6</u> 3.88	<u>62.0</u> 4.88	<u>76.2</u> —6	- 7 - 7	- <u>8</u> -9 8
<u>32</u> <u>1¼</u>	42.2	<u>45.2</u> 3.88	<u>70.6</u> - 5.38	<u>85.9</u> -6	-7 -7	8 -8
$\frac{40}{-1\frac{1}{2}}$	48.3	<u>51.6</u> 4.38	<u>77.0</u> - 5.38	<u>92.2</u> -7	-7 - 8	8 9
<u>50</u> -2	<u>60.3</u>	63.5 4.88	<u>88.9</u> — 6	<u>104</u> - 7	8 8	9 9
$\frac{65}{2^{1/2}}$	<u>73.0</u>	76.2 5.38	<u>102</u> - 7	<u>117</u> 8	8 9	9 1 0
<u>80</u> 3	<u>88.9</u>	<u>94.0</u> 6	<u>121</u> - 7	<u>134</u> 8	9 9	<u>1</u> 0 10
<u>90</u> 	102	<u>107</u> 7	<u>135</u> 8	<u>150</u> _ 9	9 10	<u>1</u> 0 — <u>11.1</u> 3 12.13
<u>100</u> 	<u>114</u>	<u>119</u> 7	<u>149</u> 8	<u>163</u> -9	<u>1</u> 0 1011.13	— <u>11.17312.13</u> — <u>12.13</u>
<u>125</u> 	<u>141</u>	$\frac{146}{8}$ Sta	$\frac{174}{-9}$	<u>189</u> 10	<u>201</u> 1.13 11.13	
<u>150</u> 5	168	<u>173</u> 9	<u>201</u> _ 9	217 10	11.13 11.13	— <u>12.13</u> — <u>12.13</u>
200	<u>219</u>	(Internet Stand	<u>252</u>	267	11.13	<u>-12.13</u>

TABLE-7.9 <u>Nominal Pipe Sizes and Wall Thickness for Inner and</u> Outer Diameters-o f-lor Nominsual Watll Thickness on-f Flexible Elastomer-Nic and Pomlyolefina Cellular Pipe Size Ins-(NPS), mulaxtion, mum. in.

Flexible Elastomeric and Polyoletin Cellular Insulat	ion, millimete	ers		
-6	9 - L		-11.13	12.1313.1314.3815.3816.3817.38
Inner Diameters of Insulation, millimeters	9	-10	-11.13	12.1313.1314.3815.3816.3817.38EachDiameterTolerances, millimeters
-7	1	11. 13	- 12.13	13.1314.381 5 .3816.3817.3818.38
25.4 to 63.5		±1. 13	12.13	13.1314.381 5. 3816.3817.3818.38 2
https://stand _8 ds_iteh.ai/catalog/s	tandæds		9 9 14.38	c 15.3816.3817.3818.3819.38 Se S 1/astro-c 5 8 5-00
76.2 to 146		1±2.313.13	-14.38	15.3816.3817.3818.3819.38
-9		1 3.1 3	-14.38	15.3816.3817.3818.3819.3820.38
173 to 224		<u>+±3.1</u> 3	<u>-14.38</u>	15.3816.3817.3818.3819.3820.38
		-14.38		16.3817.3818.3819.3820.3821.38
Outer Diameters of Insulation, millimeters		-14.38	-15.38	16.3817.3818.3819.3820.3821.38Each Outer DiameterTolerances,millimeter
		- 15.	3 8 16 .381 7.38	18.3819.3820.3821.3822.38
47.5 to 114		-15. ±	3 8 16 .81 7.38	18.3819.3820.3821.3822.38
12		-1 6. 38	-17.38	18.3819.3820.3821.3822.3823.38
117 to 201		1±6. 38	-17.38	18.3819.3820.3821.3822.3823.38 4
14 <i>B</i>		-17.50	-1 8. 50	19.5020.5021.5022.5023.5024.50
<u>217 to 279</u>		-17.50	<u>+±8.50</u>	1 <u>9</u> .5020.5021.5022.5023.5024.50

^A These are identical with pipe outer diameters (see Table 1, Columns 2 and 3).

^B Larger sizes through 36 in., in 1-in. (25.4-mm) increments.

for finding the jacketing stretch-out numbers is to look up the outer diameter for the pipe or tubing insulation from the Tables; add the applicable plus (+) outer diameter tolerance and twice the thickness of the jacketing to the insulation outer diameter number; multiply the added total times $p\bar{i}$ (3.14159) to arrive at the maximum circumference; add the necessary longitudinal over lap dimension to the maximum circumference; and the calculated answer will be the stretch-out requirement for cutting the outer jacketing to be applied over / around the pipe or tubing insulation's OD.

7. Keywords

7.1 pipe thermal insulation diameter; pipe thermal insulation dimension; thermal insulating materials-pipe; thermal insulating materials-tubing; thermal insulation; tubing thermal insulation diameter; tubing thermal insulation dimension. Corresponding values for tubing are shown in Table 12.

€ 585 – 09

					-			- ·	_	<u> </u>			
Pipe	Insulation, Nominal Thicknubess												
Nominal Size	Nominal Size <u>Tube Outsin-de</u> Diameter		-1			-11/2			-2 -21/2			-3	-
		mm					25		38	51		64	
Names	mm	mm				13	3 mm		<u>19 mm</u>	64		76	
in.					•			Ou	ter Diameter, mm ^A				
<u>1/2</u>		83					112		137	178	ť	203	
1/210	<u>12.7</u>	15.2				3	38.1		48.9	178	ŧ	203	
<u>3/4</u>		-83				-	112		137	178	;	203	22
<u>15</u>	<u>15.9</u>	<u>19.1</u>				4	1.9		54.6	1/8 170	:	203	22
-+	22.2	- 99 25.4				-	1 24 50.8		+ 53 64.0	170 79	6	203	
<u>-11/4</u>		<u>-99</u>				-	137		<u>04.0</u> 153	178203	<u>0</u>	229	
25	28.6	31.8				5	57.6		72.4	82 03		229	
-11/2		112				-	137		178	203	t	229	
<u>32</u>	<u>35.0</u>	<u>38.1</u>				6	64.0		78.7	203	ł	229	
-2		124				-	153		178	203	22	9254	28
$\frac{40}{21}$	<u>41.3</u>	44.5				4	170		86.0	203	2	2954	28
21/2 50	54.0	137 57.2				-	1/8 22 1		203	229	i	254 254	
50	<u>34.0</u>	<u>57.2</u> 153				-	178		<u>97.0</u> 203	220		254	
65	66.7	69.9				ç	95.8		111	12 29		254	
-31/2	<u> </u>	178				1	203		229	254	28	3308	
80	<u>79.4</u>	82.6					109		123	254	28	<u>133</u> 08	
-4		178				2	203		229	254	ţ	283	
<u>90</u>	<u>92.1</u>	<u>95.3</u>				-	124		$\frac{137}{254}$	<u>154</u>	i	283	
- <u>4½</u> 100	104.8	203				ż	127		254 151	283	-	308	
		220	229	254	283	308	334365	39		203		500	
		- 220	220	054	000	200	224265	20	-				
			223	204	200	300		59	- ai)				
	1416	0001101											
TABLE 10	a Inner and Outer Diameter Toler	rances for											
	enc and Polyolenn Cendiar Insul	ation, minimeters	216										
	229	254	283	308	334	365391	416	4	41	-			
Inner Diameters of Insulation, millimeters		229	254	283	308	334	365391	416	441Each Diameter To	olerances, millimeters	-		
	_ 7		283	308	3343	36539	1416441	467					
https://st	and ä<u>t</u>is /sist	3 08	308 334	334 ; 365	36 <u>5</u> 39 391	1416441 416441	467 <u>2</u> 467	2c734b175e5d/4	₉₂ tm-c585-09				
	<u>± 2</u>	<u>3</u> 08	334	365	391	416441	467	4	92				
		334	365	391	416	441467	492		18	_			
Outer Diame		334	365	391	416	441467	492	518Each Outer Diamete	r Tolerances, millimeters	3			
	10		3 65	391	416	441	467492 8	51 8543	3				
	<u>38.1 to 88.9</u>		<u>± 365</u>	391	416	441	467492	51 .8					
	11		391	41 644	1 467	492	518543	568					
		391	41 <u>± 6</u> 44	+1467 AA1	492 467	518543	568	E1	69	504			
			445	470	495	521546	5 40 572	ର ମ	97	622			
A =		Table 1 Oal								-			

TABLE 8 10 <u>Nominal Tube Sizes and Wall Thickness for Inner and</u> Outer Diameters o f-lor Nominsual Watll Thickness on f Flexible Elastomer-Nic and Pomlyolefina Cellular Pipe Size Ins (NPS), mulaxtimumon, mm

^A These are identical with pipe outer diameters (see Table 1, Columns 2 and 3).

^B Larger sizes through 36 in. in 1-in. (25.4-mm) increments.

6.Keywords

6.1pipe thermal insulation diameter; pipe thermal insulation dimension; pipe thermal insulation thickness; thermal insulation; thermal insulating materials-pipe; thermal insulating materials-rigid; tubing thermal insulation thickness

€ 585 – 09

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>Calcium Si</u>	il <u>ic</u> at ion fo e, Ce	<u>IABLE I Non</u> ellular-N_Foam	Plastics, Cellul	ar Glass, Miner	al P Fipbe Sr, a	and Perlizte (N	P S) reformed Ins	ulation		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Pipe				Insu	lation				
Nominal Size Outer Diameter Inter Diameter Minus Plus in: nm in. mm in. in. mm <t< th=""><th colspan="2" rowspan="2">Nominal Size Outer Diameter</th><th>Ni</th><th>lan an D</th><th></th><th colspan="6">Tolerance</th></t<>	Nominal Size Outer Diameter		Ni	lan an D		Tolerance					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			nameter	Inner L	hameter	Mi	nus	Plus			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	in:Names	in. <u>Names</u> in. mm		in.	mm	in.	mm	in.	mm		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>1/2</u>	-0.840	-21.3	- 0.86	-22	θ	θ		1.6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>1/2</u> <u>3/4</u>	0.840	21.3	0.86	22	0	0	0.063	$\frac{1.6}{1.6}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/4	1.050	26.7	1.07	27	0	0	0.063	1.6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1	-1.315	33.4	-1.33	-34	Ð	Ð		1.6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>1</u> -114	1.315	33.4	1.33		$\frac{0}{\Delta}$	$\frac{0}{\Delta}$	0.063	$\frac{1.6}{1.6}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11/4	1.660	42.2	1.68	43	0	0 0	0.063	1.6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-11/2	-1.900	48.3	-1.92	-49	¯	Ð		1.6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1\frac{1}{2}}{-2}$	<u>1.900</u> -2.375	<u>48.3</u> -60.3	$\frac{1.92}{-2.41}$	<u>49</u> 61			0.063	$\frac{1.6}{2.4}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	2.375	60.3	2.41	61	<u>0</u>	<u>0</u>	0.094	2.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- <u>21/2</u>	- <u>2.875</u>	73.0	- <u>2.91</u>	-74	θ	θ	0.004	2.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3	<u>2.875</u> - <u>3.500</u>	<u></u> 	<u>-2.91</u> - <u>3.53</u>	$\frac{74}{-90}$	$\frac{0}{\Theta}$	$\frac{0}{\Theta}$	0.094	$\frac{2.4}{2.4}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	3.500	88.9	3.53	90	<u>0</u>	<u>0</u>	0.094	2.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- <u>3½</u> 21/2	-4.000	101.6 101.6	-4.03	102 102	0.021	0.8	0.004	2.4 2.4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-4	4.000	<u>101.0</u> 114.3	4.03	102 115	0.031	0.8 0.8	0.094	$\frac{2.4}{2.4}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	4.500	114.3	4.53	<u>115</u>	0.031	0.8	0.094	2.4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-4 ¹ /2 41/2	- <u>5.000</u> 5.000	127.0 127.0	- 5.03 5.03	128 128	0.031	0.8	0.094	2.4 2.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-5	5.563	141.4	5.64	120	0.001	0.0 0.8	<u>0.004</u>	2.4 2.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	5.563	$\frac{141.4}{100.0}$	5.64	143	<u>0.031</u>	$\frac{0.8}{0.9}$	<u>0.094</u>	$\frac{2.4}{2.4}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 0 6	6.625	168.3	6.70	170	0.031	0.8	0.094	2.4 2.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-7	-7.625	193.7	-7.70	196		0.8		2.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	7.625	<u>193.7</u>	7.70	$\frac{196}{221}$	<u>0.031</u>	0.8	<u>0.094</u>	$\frac{2.4}{2.4}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	8.625	219.1	8.70	221	0.031	0.8	0.094	2.4		
$\frac{9}{10}$ $\frac{9.625}{100}$ $\frac{244.5}{100}$ $\frac{9.70}{100}$ $\frac{246}{246}$ $\frac{0.031}{100}$ $\frac{0.8}{100}$ $\frac{0.094}{100}$ $\frac{2}{100}$	-9	9.625	244.5	9.70	246		0.8		2.4		
$\frac{11}{111}$ $\frac{111750}{111750}$ $\frac{111750}{1$	<u>9</u> 10	<u>9.625</u>	244.5	9.70	<u>246</u> 275	<u><u><u> </u></u></u>	$\sqrt{\frac{0.8}{0.8}}$	0.094	$\frac{2.4}{2.4}$		
<u>10</u> <u>10.750</u> <u>273.0</u> <u>10.83</u> <u>275</u> <u>0.031</u> <u>0.8</u> <u>0.094</u> <u>2</u>	10	10.750	273.0	10.83	275	0.031	0.8	0.094	2.4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	11.750	298.4	11.83	300	0.001	0.8	0.004	2.4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>11</u> 12	$\frac{11.750}{12.750}$	$\frac{298.4}{323.8}$	$\frac{11.83}{12.84}$ A	$5TM\frac{300}{326}585-$	0.031	$\frac{0.8}{1.6}$	0.094	2.4 2.4		
12 https://s ind/12.750 ieh u/c: 323.8 g/st nda 12.84 ist/ 2d6 326 1-d cc- 0.063 -91 1-2(1.6) 4b1 5e: 0.094 tm-c5852	12 https://st	12.750 teh.	ai/ca <u>323.8</u> g/sta	nda <u>12.84</u> ist/o	2d6 326 1-d8	cc- <u>0.063</u> -9f	31-2c <u>1.6</u> 34b1	75e <u><u>0.094</u>.tm-c</u>	585 <u>2.4</u> 9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14^ 14 ^A	14.000 14.000	355.6 355.6	14.09 14.09	358 358	0.063	1.6 1.6	0.156	4.0 4.0		

 TABLE 1 Nominal Pipe Sizes with Inner Diameters & Tof-Ilerances for

 Calcium Silication foe, Cellular N Foam Plastics, Cellular Glass, Mineral P Fipbe Sr, and Perlizte (N PS) reformed Insulation

^A Larger sizes through 26 in., in 1-in. (25.4-mm) increments.