INTERNATIONAL STANDARD ISO 20636 First edition 2018-07 # Infant formula and adult nutritionals — Determination of vitamin D by liquid chromatographymass spectrometry Formules infantiles et produits nutritionnels pour adultes — Détermination de la teneur en vitamine D par chromatographie **iTeh ST**liquide couplée à la spectrométrie de masse (standards.iteh.ai) 100f4c417bbb/iso-20636-2018 ISO 20636:2018 https://standards.iteh.ai/catalog/standards/sist/9ebc1455-d6e0-4eaf-bb5e- ## iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 20636:2018 https://standards.iteh.ai/catalog/standards/sist/9ebc1455-d6e0-4eaf-bb5e-100f4c417bbb/iso-20636-2018 #### COPYRIGHT PROTECTED DOCUMENT #### © ISO 2018 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Cor | ntents | Page | | |------|---|--------|--| | Fore | eword | iv | | | 1 | Scope | 1 | | | 2 | Normative references | 1 | | | 3 | Terms and definitions | | | | 4 | Principle | | | | 5 | Reagents and materials 5.1 General 5.2 Reagent preparation 5.3 Standard preparation 5.4 Calibration standard solutions | | | | 6 | Apparatus | 4 | | | 7 | Sample preparation 7.1 Powder sample preparation 7.2 Slurry sample preparation 7.3 Liquid sample preparation | 5
5 | | | 8 | Procedure 8.1 Extraction and derivatisation 8.2 Chromatography C.T. AND ARD PREVIEW 8.3 Mass spectrometry | 6 | | | 9 | Calculations (standards.iteh.ai) | 8 | | | 10 | Results | | | | 11 | Precision https://standards.iteh.ai/catalog/standards/sist/9ebc1455-d6e0-4eaf-bb5e-11.1 General 100f4c417bbb/iso-20636-2018 11.2 Repeatability 11.3 Reproducibility | 12 | | | Anne | nex A (informative) Examples of spectra and chromatograms | 15 | | | Anno | nex B (informative) Precision data | 18 | | | | nex C (informative) Alternative instrument settings | | | | | nex D (informative) Comparison between ISO 20636 and EN 12821 | | | | | lingranhy | 23 | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html. (Standards.iteh.ai) This document was prepared by Technical Committee ISO/TC 34, Food products, in collaboration with AOAC INTERNATIONAL. It is being published by ISO and separately by AOAC INTERNATIONAL. The method described in this document is equivalent to the AOAC Official Method 2016.05, Analysis of Vitamin D_2 and Vitamin D_3 in Fortified Milk Powders, Infant Formulas, and Adult/Pediatric Nutritional Formulas. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. ### Infant formula and adult nutritionals — Determination of vitamin D by liquid chromatography-mass spectrometry WARNING — The use of this method can involve hazardous materials, operations and equipment. This method does not purport to address all the safety problems associated with its use. It is the responsibility of the user of this method to establish appropriate safety and health practices. #### 1 Scope This document specifies a method for the quantitative determination of vitamin D_2 and/or vitamin D_3 in infant formula, and adult nutritionals in solid (i.e. powders) or liquid (i.e. ready-to-feed liquids and liquid concentrates) forms using liquid chromatography-mass spectrometry. The application range runs from 0,15 μ g/100 g (limit of quantification) to 59 μ g/100 g for vitamin D_2 and from 0,25 μ g/100 g to 65 μ g/100 g for vitamin D_3 . #### 2 Normative references There are no normative references in this document. ### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases (for 2015) in standardization at the following addresses: https://standards.iteh.ai/catalog/standards/sist/9ebc1455-d6e0-4eaf-bb5e- - ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at http://www.electropedia.org/ #### 3.1 #### adult nutritional nutritionally complete, specially formulated food, consumed in liquid form, which may constitute the sole source of nourishment, made from any combination of milk, soy, rice, whey, hydrolysed protein, starch and amino acids, with and without intact protein #### 3.2 #### infant formula breast-milk substitute specially manufactured to satisfy, by itself, the nutritional requirements of infants during the first months of life up to the introduction of appropriate complementary feeding [SOURCE: CODEX STAN 72-1981] #### 4 Principle Samples are saponified at high temperature then lipid soluble components are extracted into isooctane. A portion of the isooctane layer is transferred, washed, and an aliquot of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) is added to derivatise vitamin D to form a high molecular mass, easily ionisable adduct. The vitamin D-adduct is then re extracted into a small volume of acetonitrile and analysed by reversed-phase liquid chromatography. Detection is by mass spectrometry using multiple reaction monitoring (MRM). Stable isotope labelled d6-vitamin D_2 and d6-vitamin D_3 internal standards are used for quantitation to correct for losses in extraction and any variation in derivatisation and ionisation efficiencies[2]. #### 5 Reagents and materials During the analysis, unless otherwise stated, use only reagents of recognized analytical grade and distilled or demineralized water or water of equivalent purity. #### 5.1 General - **5.1.1 Standards**, ≥99 % pure. - **5.1.2 Vitamin D₂**, ergocalciferol. - **5.1.3 Vitamin D**₃, cholecalciferol. - **5.1.4** *d6***-Vitamin D₂**, 26,26,26,27,27,27*-d6* ergocalciferol. - **5.1.5** *d6*-Vitamin **D**₃, 26,26,26,27,27,27-*d6* cholecalciferol. - **5.1.6 PTAD** (4-phenyl-1,2,4-triazoline-3,5-dione). - **5.1.7 Formic acid** (HCO₂H), LC-MS grade. - 5.1.8 Potassium hydroxide (KOH). STANDARD PREVIEW - 5.1.9 Pyrogallol (C₆H₃(OH)₃). (standards.iteh.ai) - **5.1.10 Ethanol** (C₂H₅OH). ISO 20636:2018 https://standards.iteh.ai/catalog/standards/sist/9ebc1455-d6e0-4eaf-bb5e- - **5.1.11 Methanol** (CH₃OH), LC-MS grade. 100f4c417bbb/iso-20636-2018 - **5.1.12 Isooctane** ((CH₃)₃CCH₂CH(CH₃)₂). - **5.1.13 Acetone** (CH₃COCH₃). - **5.1.14** Acetonitrile (CH₃CN), LC-MS grade. #### 5.2 Reagent preparation - **5.2.1 PTAD solution,** c(4-phenyl-1,2,4-triazoline-3,5-dione) = 10 mg/ml. Dissolve 50 mg PTAD (5.1.6) in 5,0 ml acetone (5.1.13). - **5.2.2 Potassium hydroxide solution,** c(KOH) = 8.9 mol/l. Dissolve 100 g potassium hydroxide (5.1.8) in 200 ml water. - **5.2.3 Ethanolic pyrogallol solution,** $c(C_6H_3(OH)_3) = 0.079$ mol/l. Dissolve 5 g pyrogallol (5.1.9) in 500 ml ethanol (5.1.10). - **5.2.4 Mobile phase A,** $c(HCO_2H) = 0.026$ 5 mol/l. To 500 ml of water, add 0.5 ml formic acid (5.1.7). - **5.2.5 Mobile phase B,** methanol, 500 ml (5.1.11). #### 5.3 Standard preparation - **5.3.1** Vitamin D is sensitive to light. Perform all steps under low-level incandescent lighting. If exclusively vitamin D_3 is required for analysis, then standards pertaining to vitamin D_2 need not be used and vice versa. Calibration standards should be bracketed at the beginning and at the end of an analytical run. - 5.3.2 Vitamin D_2 stable isotope labelled stock standard solution, $\rho \approx 10 \, \mu \text{g/ml}$. Dispense the contents of a 1 mg vial of d6-vitamin D_2 (5.1.4) into a 100 ml volumetric flask. Dissolve in 90 ml of ethanol (5.1.10). To promote dissolution, sonicate if necessary. Mix thoroughly, make up to volume with ethanol (5.1.10). Measure the absorbance of an aliquot at 265 nm. The spectrophotometer should be zeroed against an ethanol (5.1.10) blank solution. Calculate and record concentration. Immediately dispense aliquots (~1,3 ml) into cryogenic vials and freeze at < -15 °C for up to 6 months. - 5.3.3 Vitamin D₃ stable isotope labelled stock standard solution, $\rho \approx 10~\mu g/ml$. Dispense the contents of a 1 mg vial of d6-vitamin D₃ (5.1.5) into a 100 ml volumetric flask. Dissolve in 90 ml of ethanol (5.1.10). To promote dissolution, sonicate if necessary. Mix thoroughly, make up to volume with ethanol (5.1.10). Measure the absorbance of an aliquot at 265 nm. The spectrophotometer should be zeroed against an ethanol (5.1.10) blank solution. Calculate and record concentration. Immediately dispense aliquots (~1,3 ml) into cryogenic vials and freeze at < -15 °C for up to 6 months. - **5.3.4 Stable isotope labelled internal standard solution**, $\rho \approx 1 \, \mu \text{g/ml}$. Depending on the number of samples that need to be analysed in a run, more or less stable isotope labelled internal standard solution needs to be made up. For every 15 samples (or part thereof) in an analytical run, remove 1 vial of Vitamin D₂ stable isotope labelled stock standard solution (5.3.2) and/or 1 vial of Vitamin D₃ stable isotope labelled stock standard solution (5.3.3) from the freezer and allow to warm to room temperature. Pipette 1,0 ml of vitamin D₂ stable isotope labelled stock standard solution (5.3.2) and/or 1,0 ml of vitamin D₃ stable isotope labelled stock standard solution (5.3.3) into a 10 ml volumetric flask (use a separate 10 ml volumetric flask for each set of 15 samples). Make each 10 ml volumetric flask to volume with acetonitrile, pool together and mix thoroughly Make fresh daily eaf-bb5e- 100f4c417bbb/iso-20636-2018 - **5.3.5 Vitamin D₂ non-labelled stock standard solution**, $\rho \approx 1$ mg/ml. Weigh accurately, approximately 50 mg of vitamin D₂ (5.1.2) into a 50 ml volumetric flask. Dissolve in 40 ml of ethanol (5.1.10). To promote dissolution, sonicate if necessary. Mix thoroughly, make up to volume with ethanol (5.1.10). Store in freezer at < -15 °C for up to 1 month. - **5.3.6 Vitamin D**₃ **non-labelled stock standard solution**, $\rho \approx 1$ mg/ml. Weigh accurately, approximately 50 mg of vitamin D₃ (5.1.3) into a 50 ml volumetric flask. Dissolve in 40 ml of ethanol (5.1.10). To promote dissolution, sonicate if necessary. Mix thoroughly, make up to volume with ethanol (5.1.10). Store in freezer at < -15 °C for up to 1 month. - 5.3.7 Vitamin D_2 non-labelled purity standard solution, $\rho \approx 10~\mu g/ml$. Pipette 1,0 ml of vitamin D_2 non-labelled stock standard solution (5.3.5) into a 100 ml volumetric flask. Make to volume with ethanol (5.1.10). Measure the absorbance of an aliquot at 265 nm. The spectrophotometer should be zeroed against an ethanol (5.1.10) blank solution. Record absorbance and calculate concentration. Make fresh daily. - 5.3.8 Vitamin D_3 non-labelled purity standard solution, $\rho \approx 10 \, \mu \text{g/ml}$. Pipette 1,0 ml of vitamin D_3 non-labelled stock standard solution (5.3.6) into a 100 ml volumetric flask. Make to volume with ethanol (5.1.10). Measure the absorbance of an aliquot at 265 nm. The spectrophotometer should be zeroed against an ethanol (5.1.10) blank solution. Record absorbance and calculate concentration. Make fresh daily. - 5.3.9 Non-labelled working standard solution, $\rho \approx 1~\mu g/ml$. Pipette 1,0 ml of vitamin D_2 non-labelled purity standard solution (5.3.7) and/or 1,0 ml of vitamin D_3 non-labelled purity standard solution (5.3.8) into a 10 ml volumetric flask. Make to volume with acetonitrile (5.1.14) and mix thoroughly. Make fresh daily. #### 5.4 Calibration standard solutions - **5.4.1** See <u>Table 1</u> for nominal vitamin D concentrations of the calibration standard solutions. Make fresh daily. - **5.4.2 Calibration standard 1.** Pipette 10 μ l non-labelled working standard solution (5.3.9) and 250 μ l stable isotope labelled internal standard solution (5.3.4) into a 25 ml volumetric flask. Add 5 ml of acetonitrile (5.1.14) and 75 μ l of PTAD solution (5.2.1), shake to mix and leave in the dark for 5 min. Add 6,25 ml of water then make to volume with acetonitrile (5.1.14), mix, and transfer to HPLC vial ready for analysis. - 5.4.3 Calibration standard 2. Pipette 50 μ l non-labelled working standard solution (5.3.9) and 250 μ l ntable isotope labelled internal standard solution (5.3.4) into a 25 ml volumetric flask. Add 5 ml of acetonitrile (5.1.14) and 75 μ l of PTAD solution (5.2.1), shake to mix and leave in the dark for 5 min. Add 6,25 ml of water then make to volume with acetonitrile (5.1.14), mix, and transfer to HPLC vial ready for analysis. - **5.4.4 Calibration standard 3**. Pipette 250 μ l non-labelled working standard solution (5.3.9) and 250 μ l stable isotope labelled internal standard solution (5.3.4) into a 25 ml volumetric flask. Add 5 ml of acetonitrile (5.1.14) and 75 μ l of PTAD solution (5.2.1), shake to mix and leave in the dark for 5 min. Add 6,25 ml of water then make to volume with acetonitrile (5.1.14), mix, and transfer to HPLC vial ready for analysis. - **5.4.5 Calibration standard 4.** Pipette 500 μ l non-labelled working standard solution (5.3.9) and 250 μ l stable isotope labelled internal standard solution (5.3.4) into a 25 ml volumetric flask. Add 5 ml of acetonitrile (5.1.14) and 75 μ l of PTAD solution (5.2.1), shake to mix and leave in the dark for 5 min. Add 6,25 ml of water then make to volume with acetonitrile (5.1.14), mix, and transfer to HPLC vial ready for analysis. https://standards.iteh.ai/catalog/standards/sist/9ebc1455-d6e0-4eaf-bb5e-denoted and the standards of the standard standards of the standard standards of the standard standard standard standards of the standard standa **5.4.6 Calibration standard 5**. Pipette 1 250 μ l non-labelled working standard solution (5.3.9) and 250 μ l stable isotope labelled internal standard solution (5.3.4) into a 25 ml volumetric flask. Add 5 ml of acetonitrile (5.1.14) and 75 μ l of PTAD solution (5.2.1), shake to mix and leave in the dark for 5 min. Add 6,25 ml of water then make to volume with acetonitrile (5.1.14), mix, and transfer to HPLC vial ready for analysis. | Calibration solution | Concentration of vitamin D | Concentration of d6-vitamin D | | | |----------------------|----------------------------|-------------------------------|--|--| | 1 | 0,4 | 10 | | | | 2 | 2,0 | 10 | | | | 3 | 10 | 10 | | | | 4 | 20 | 10 | | | | 5 | 50 | 10 | | | Table 1 — Nominal concentration of calibration standards #### 6 Apparatus Usual laboratory glassware an equipment and, in particular, the following. - **6.1 Ultra high performance liquid chromatography (UHPLC) system**, consisting of dual pump system, a sample injector unit, a degasser unit, and a column oven. - **6.2 Triple quadrupole mass spectrometer**, with sufficient sensitivity to detect and quantify vitamin D in PTAD adduct at 0,4 ng/ml. - **6.3 Solid core silica column**, e.g. Phenomenex Kinetex¹⁾ C_{18} 2,6 μ m, 2,1 mm × 50 mm, or equivalent. - **6.4 Spectrophotometer**, capable of digital readout to three decimal places. - **6.5 Centrifuge tubes**, polypropylene, 15 ml. - **6.6 Boiling tubes**, glass, 60 ml. - **6.7 Water bath**, 20 °C to 70 °C. - **6.8 Disposable syringes**, capacity 1 ml. - **6.9 Syringe filters**, PTFE, 0,2 μm, 13 mm. - **6.10 Centrifuges**, suitable for 60 ml boiling tubes, and 15 ml centrifuge tubes. - **6.11 Pasteur pipettes**, glass, ~140 mm. - 6.12 Horizontal shaker. - **6.13** Micro centrifuge tubes, 2 ml. #### iTeh STANDARD PREVIEW - 6.14 Filter membranes, 0,45 µm polyamide. (Standards.iteh.ai) - **6.15** Cryogenic vials, 2 ml. ISO 20636:2018 6.16 High performance liquid chromatography (HPLC) vials, septa, and caps. #### 7 Sample preparation #### 7.1 Powder sample preparation Accurately weigh 1,8 g to 2,2 g of powder sample into a boiling tube. Record mass. #### 7.2 Slurry sample preparation Accurately weigh 19,0 g to 21,0 g of powder to a disposable slurry container. Record mass. Accurately weigh ~80 ml water to container. Record mass. Shake thoroughly until mixed. Place in the dark at room temperature for 15 min and shake to mix every 5 min. Accurately weigh 9,5 g to 10,5 g of slurry or reconstituted powder sample into a boiling tube. Record mass. #### 7.3 Liquid sample preparation Accurately weigh 10,0 ml of liquid milk into a boiling tube. Record mass. ¹⁾ This is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of this product. #### 8 Procedure #### 8.1 Extraction and derivatisation To powder, slurry, or liquid sample in a boiling tube, add 10 ml of ethanolic pyrogallol solution (5.2.3), and 0,5 ml of stable isotope labelled internal standard solution (5.3.4), cap and vortex mix. Add 2 ml of potassium hydroxide solution (5.2.2) to boiling tube, cap and vortex mix. Place boiling tube in water bath at 70 °C for 1 h, vortex mix every 15 min. Place boiling tube in water bath at room temperature until cool. Add 10 ml of isooctane (5.1.12) to the boiling tube; cap boiling tube tightly and place on horizontal shaker for 10 min. Add 20 ml of water to boiling tube and invert tube 10 times; place in centrifuge at \geq 250g for 15 min. Transfer a 5 ml aliquot of the upper isooctane layer into a 15 ml centrifuge tube using a Pasteur pipette, taking care not to transfer any of the lower layer (discard boiling tube with lower layer). Add 5 ml of water to centrifuge tube, cap and vortex mix and place in centrifuge at 2 000*g* for 5 min. Transfer 4 ml to 5 ml of upper isooctane layer to a new 15 ml disposable centrifuge tube using a disposable pipette, taking care not to transfer any of the lower layer (discard centrifuge tube with lower layer). iTeh STANDARD PREVIEW Add 75 μ l of PTAD solution (5.2.1) to centrifuge tube, cap and immediately vortex mix. Allow to stand in the dark for 5 min to allow for derivatization reaction to complete. Add 1 ml acetonitrile to centrifuge tube, cap and vortex mix, place in centrifuge at 2 000*g* for 5 min. Using a variable volume pipette, transfer $500 \,\mu$ of the lower layer into a micro centrifuge tube (6.13) taking care not to transfer any of the upper layer. Add 167 μ l of water to the micro centrifuge tube (6.13), cap and vortex mix. Using a syringe filter, transfer an aliquot from the micro centrifuge tube (6.13) to an amber HPLC vial, cap ready for analysis. #### 8.2 Chromatography Form high pressure gradients by mixing the two mobile phases, A and B, using the procedure given in $\underline{\text{Table 2}}$. Information on expected retention times and product ion spectra are given in $\underline{\text{Annex A}}$. **Time** Flow rate Mobile phase A Mobile phase B ml/min min % % 0 START 0,6 25 75 **3,3 PUMP** 0,6 0 100 **3,7 PUMP** 0 100 1,0 **4,8 PUMP** 1,0 100 0 **4,9 PUMP** 0,6 25 75 25 **5.5 STOP** 0,6 75 Table 2 — Gradient procedure for chromatographic separation #### 8.3 Mass spectrometry Set up the mass spectrometer with the instrument setting shown in $\underline{\text{Table 3}}$. These values are indicative and need to be optimized for each instrument used. Examples of alternative instrument settings are given in $\underline{\text{Annex C}}$. Table 3 — Mass spectrometer instrument settings | Instrument parameter | Value | | | | |----------------------|------------------------------|--|--|--| | ionization mode | ESI+ | | | | | curtain gas | 207 kPa (30 psi) | | | | | nebulizer gas | 277 kPa (40 psi) | | | | | heater gas | as 277 kPa (40 psi) | | | | | collision gas | collision gas N ₂ | | | | | source temperature | ce temperature 300 °C | | | | | ion spray voltage | 5 500 V | | | | Settings are applicable to Sciex 6500 mass spectrometer. Sciex 6500 mass spectrometer is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of this product. Compound specific parameters to be used are shown in <u>Table 4</u> and <u>Table 5</u>. Table 4 — Compound parameters (vitamin D_2 instrument method only) | Vitamin D ₂ ion ^a | Precursor (Slion 102 | Product ton | 1.2P) | EP | CE | CXP | Dwell
time | | |---|----------------------|---|---------------------|-------------|----|-----|---------------|-----| | | m/z | m/z | V | V | V | V | ms | | | analyte quantifier | 572,2 150 | 1 206 26 2018
298,0
tandards/sist/Qeb | c1455-d6e0 | 0-4eaf-bb5e | 23 | 22 | 120 | | | analyte qualifier | 5724c417 | bbb/i 2 89636-2 | 2 ⁰¹⁸ 81 | 010 | 10 | 39 | 16 | 80 | | internal standard quantifier | 578,2 | 298,0 | | | 10 | 23 | 22 | 120 | | internal standard qualifier | 578,2 | 280,0 | | | 39 | 16 | 80 | | #### Key DP: declustering potential EP: entrance potential CE: collision energy CXP: collision cell exit potential Analyte = vitamin D₂-PTAD adduct, Internal standard ion = d6-vitamin D₂-PTAD adduct.