INTERNATIONAL STANDARD

First edition 2018-07

Water quality — Uranium — Test method using alpha liquid scintillation counting

Qualité de l'eau — Uranium — Méthode d'essai par comptage des scintillations alpha en milieu liquide

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13169:2018 https://standards.iteh.ai/catalog/standards/sist/43cac5df-24a0-46e2-97aec099e0edeb26/iso-13169-2018

Reference number ISO 13169:2018(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13169:2018 https://standards.iteh.ai/catalog/standards/sist/43cac5df-24a0-46e2-97aec099e0edeb26/iso-13169-2018

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Fore	eword	1V		
Intro	Itroduction			
1	Scope			
2	Normative references			
3	Terms, definitions, symbols and units			
4	Principle			
5	Reagents and equipment			
	5.1 Reagents			
	5.2 Equipment	3		
6	Sampling	4		
7	Instrument set up and calibration			
	7.1 Preparation of extractant scintillation cocktail			
	7.3 Preparation of beta emitter calibration source			
	7.4 Optimization of counting conditions			
	7.5 Detection efficiency	5		
	7.6 Blank sample preparation and measurement			
8	Procedure I Cen STANDARD PREVIEW			
	8.2 Pre-concentration by evaporation S. it e. a.1			
	8.3 Sample preparation	6		
	8.4 Sample measurement	6		
9	Expression of results iteh.ai/catalog/standards/sist/43cac5df-24a0-46e2-97ae-			
	9.1 Calculation of activity per unit of mass 109-2018			
	9.3 Decision threshold			
	9.4 Detection limit	7		
	9.5 Confidence limits			
	9.6 Calculations using the concentration activity	8		
10	Interference control	8		
11	Quality control	8		
12	Test report	9		
Anne	ex A (informative) Set-up parameters and validation data			
Bibli	iography			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see <u>www.iso</u> .org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 147, *Water quality*, Subcommittee SC 3, *Radioactivity measurements*. https://standards.iteh.ai/catalog/standards/sist/43cac5df-24a0-46e2-97ae-

Any feedback or questions on this document should be/directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

Radioactivity from several naturally-occurring and anthropogenic sources is present throughout the environment. Thus, water bodies (e.g. surface waters, ground waters, sea waters) can contain radionuclides of natural, human-made, or both origins.

- Natural radionuclides, including 40K, 3H, 14C, and those originating from the thorium and uranium decay series, in particular 226Ra, 228Ra, 234U, 238U, 210Po and 210Pb can be found in water for natural reasons (e.g. desorption from the soil and washoff by rain water) or can be released from technological processes involving naturally occurring radioactive materials (e.g. the mining and processing of mineral sands or phosphate fertilizers production and use).
- Human-made radionuclides such as transuranium elements (americium, plutonium, neptunium, curium), 3H, 14C, 90Sr and gamma emitting radionuclides can also be found in natural waters. Small quantities of these radionuclides are discharged from nuclear fuel cycle facilities into the environment as a result of authorized routine releases. Some of these radionuclides used for medical and industrial applications are also released into the environment after use. Anthropogenic radionuclides are also found in waters as a result of past fallout contaminations resulting from the explosion in the atmosphere of nuclear devices and accidents such as those that occurred in Chernobyl and Fukushima.

Radionuclide activity concentration in water bodies can vary according to local geological characteristics and climatic conditions and can be locally and temporally enhanced by releases from nuclear installation during planned, existing and emergency exposure situations^[1]. Drinking-water may thus contain radionuclides at activity concentrations which could present a risk to human health.

The radionuclides present in **liquid effluents are usually co**ntrolled before being discharged into the environment^[2] and water bodies. Drinking waters are monitored for their radioactivity as recommended by the World Health Organization (WHO)^[3], so that proper actions can be taken to ensure that there is no adverse health effect to the public. Following these international recommendations, national regulations usually specify radionuclide authorized concentration limits for liquid effluent discharged to the environment and radionuclide guidance levels for waterbodies and drinking waters for planned, existing, and emergency exposure situations. Compliance with these limits can be assessed using measurement results with their associated uncertainties as specified by ISO/IEC Guide 98-3 and ISO 5667-20^[4].

Depending on the exposure situation, there are different limits and guidance levels that would result in an action to reduce health risk. As an example, during a planned or existing situation, the WHO guidelines for guidance level for uranium 238 and uranium 234 in drinking water is 10 Bq/l and 1 Bq/l, respectively. The provisional guideline value for total content of uranium in drinking water is 30 μ g/l based on its chemical toxicity, which is predominant compared with its radiological toxicity.

NOTE 1 The guidance level is the activity concentration with an intake of 2 l/d of drinking water for one year that results in an effective dose of 0,1 mSv/a for members of the public. This is an effective dose that represents a very low level of risk and which is not expected to give rise to any detectable adverse health effects^[3].

In the event of a nuclear emergency, the WHO Codex Guideline Levels^[6] state that the activity concentration might not be greater than 100 Bq/l for uranium 235.

NOTE 2 The Codex guidelines levels (GLs) apply to radionuclides contained in foods destined for human consumption and traded internationally, which have been contaminated following a nuclear or radiological emergency. These GLs apply to food after reconstitution or as prepared for consumption, i.e. not to dried or concentrated foods, and are based on an intervention exemption level of 1 mSv in a year for members of the public (infant and adult)^[6].

Thus, the test method can be adapted so that the characteristic limits, decision threshold, detection limit and uncertainties ensure that the radionuclide activity concentrations test results can be verified to be below the guidance levels required by a national authority for either planned/existing situations or for an emergency situation^{[5][6][7]}.

ISO 13169:2018(E)

Usually, the test methods can be adjusted to measure the activity concentration of the radionuclide(s) in either wastewaters before storage or in liquid effluents before being discharged to the environment. The test results will enable the plant/installation operator to verify that, before their discharge, wastewaters/liquid effluent radioactive activity concentrations do not exceed authorized limits.

The test method(s) described in this document may be used during planned, existing and emergency exposure situations as well as for wastewaters and liquid effluents with specific modifications that could increase the overall uncertainty, detection limit and threshold.

The test method(s) may be used for water samples after proper sampling, sample handling and test sample preparation (see the relevant part of the ISO 5667 series).

An International Standard on a test method for total activity concentration of uranium isotopes in water samples is justified for test laboratories carrying out these measurements, required sometimes by national authorities, as laboratories may have to obtain a specific accreditation for radionuclide measurement in drinking water samples.

This document is one of a set of International Standards on test methods dealing with the measurement of the activity concentration of radionuclides in water samples.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13169:2018 https://standards.iteh.ai/catalog/standards/sist/43cac5df-24a0-46e2-97aec099e0edeb26/iso-13169-2018

Water quality — Uranium — Test method using alpha liquid scintillation counting

WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices.

IMPORTANT — It is absolutely essential that tests conducted in accordance with this document be carried out by suitably qualified staff.

1 Scope

This document specifies the measurement method for the determination of total activity concentration of uranium isotopes in non-saline waters by extraction and liquid scintillation counting.

This method covers the measurement of soluble uranium isotopes in water in activity concentrations between approximately $2 \cdot 10^{-3}$ Bq/kg and 10 Bq/kg when analysing a 1 l test sample volume with a 60 000 s counting time with a typical alpha LSC instrument.

The ratio ²³⁴U/²³⁸U can also be determined. This method has not been tested for the measurement of other uranium isotopes. Teh STANDARD PREVIEW

2 Normative references (standards.iteh.ai)

The following documents are referred to in the references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3696, Water for analytical laboratory use — Specification and test methods

ISO 5667-1, Water quality — Sampling — Part 1: Guidance on the design of sampling programmes and sampling techniques

ISO 5667-3, Water quality — Sampling — Part 3: Guidance on the preservation and handling of water samples

ISO 80000-10, Quantities and units — Part 10: Atomic and nuclear physics

ISO 11929, Determination of the characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation — Fundamentals and application

ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories

ISO/IEC Guide 98-3, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)

3 Terms, definitions, symbols and units

For the purposes of this document, the terms, definitions, symbols and units given in ISO 80000-10, ISO/IEC Guide 98-3 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>http://www.iso.org/obp</u>_
- IEC Electropedia: available at http://www.electropedia.org/

ISO 13169:2018(E)

т	mass of the test sample, in grams
$m_{\rm S(U)}$	mass of ²³⁶ U standard solution used for the preparation of the calibration sample, in grams
m _{S(Sr)}	mass of ⁹⁰ Sr standard solution used for the preparation of the calibration sample, in grams
As	activity per unit of mass of the $^{236}\mathrm{U}$ standard solution at the measuring time, in becquerel per gram
rs	count rate of the calibration sample in the alpha window, per second
r_0	blank sample count rate in the alpha window, per second
r _g	sample gross count rate in the alpha window, per second
ε	alpha efficiency
а	activity per unit of mass, in becquerel per gram
CA	activity concentration, in becquerel per litre
t_0	blank sample counting time, in seconds
tg	sample counting time, in seconds
ts	calibration sample counting time, in seconds D PREVIEW
u(a)	standard uncertainty associated with the measurement result; in becquerel per gram
U(a)	expanded uncertainty, calculated by $U = k u (c_A)$ with k= 1, 2,, in becquerel per gram
a*	decision threshold for the alpha activity in becquerel per gram _{e2-97ae-}
a#	detection limit for the alpha activity, in becquerel per gram
a< ,a>	lower and upper limits of the confidence interval, in becquerel per gram
r _{sα,β}	alpha emitter count rate in beta window
$r_{\rm s0,\beta}$	blank count rate in beta window
r _{sα,T}	alpha emitter count rate in total (alpha+beta) window
r _{sβ,α}	beta emitter count rate in alpha window
$r_{\rm s0,\alpha}$	blank count rate in alpha window
r _{sβ,T}	beta emitter count rate in total (alpha+beta) window
$ au_{lpha}$	alpha spillover parameter
$ au_{eta}$	beta spillover parameter

4 Principle

The water sample is first acidified with a fixed amount of nitric acid and then, if lower detection limits are required, concentrated by evaporation. Uranium isotopes are then extracted (liquid-liquid extraction) by a scintillation cocktail containing a complexing agent [bis(2-ethylhexyl) hydrogen phosphate, HDEHP] and counted by liquid scintillation. The total activity of uranium isotopes can be thus determined. ²³⁶U standard solution is used for calibration (external standard).

Spectral deconvolution can be performed using a suitable software to assess the 234U/238U ratio.

Reagents and equipment 5

5.1 Reagents

All reagents shall be of recognised analytical grade and shall not contain any detectable alpha and beta activity.

Nitric acid, c(HNO₃) = 15,8 mol/l, ρ = 1,42 g/ml, mass fraction w(HNO₃) = 70 %. 5.1.1

5.1.2 **Nitric acid**, **c(HNO₃) = 0,7 mol/l**, obtained by dilution of concentrated nitric acid.

5.1.3 Laboratory water, distilled or deionized (complying with grade 3 of ISO 3696).

Deionized water can contain detectable amounts of ²²²Rn and short lived daughters. It is therefore strongly recommended to boil the water under vigorous stirring and let it stand for one day before its use. An alternative option is to purge it with nitrogen for about 1 h for 2 l volume.

5.1.4 Scintillation cocktail, to be prepared (see <u>7.1</u>).

- 5.1.5
- Ethanol, 95 %. iTeh STANDARD PREVIEW
- 5.1.6 p-Xylene, 99 %, for spectroscopy or scintillation grade.
- 5.1.7 Bis(2-ethylhexyl) hydrogen phosphate (HDEHP), 95 %.
- https://standards.iteh.ai/catalog/standards/sist/43cac5df-24a0-46e2-97ae-5.1.8 Naphthalene, 99 %, scintillation grade 0-13169-2018
- 2-(4-Biphenvlvl)-6-phenvl benzoxazole (PBBO), scintillation grade. 5.1.9

5.1.10 Radioactive standard solution.

Alpha and beta emitter standard solutions (respectively 236 U and 90 Sr/ 90 Y or other suitable beta emitter radionuclide) shall be provided with calibration certificates containing at least the activity concentration, measurement uncertainty and/or statement of compliance with an identified metrological specification.

5.2 Equipment

- 5.2.1 Balance.
- 5.2.2 Hot plate with magnetic stirrer and stirring bar.
- 5.2.3 pH meter.

5.2.4 Wide-mouth HDPE sample bottles, volumes between 100 ml and 500 ml.

5.2.5 **Liquid scintillation counter**, with α/β discrimination option, with thermostated counting chamber and preferably a commercially available low background counter to achieve better detection limits.

5.2.6 Polyethylene scintillation vials, PTFE coated, 20 ml.

PTFE coated polyethylene vials are the best choice since they prevent both the diffusion of the cocktail into the wall of the vial and the absorption of radon from the outer environment. Glass vials exhibit a considerably higher background and generally degrade both α/β discrimination and α peaks resolution.

6 Sampling

Collect the sample in accordance with ISO 5667-1. Store the water sample (from 0,1 l to 1 l) in a plastic bottle in accordance with ISO 5667-3. Acidify the sample with HNO_3 : if the sample is not supposed to be concentrated by evaporation, add 5 ml of HNO_3 to 95 g of sample; if pre-concentration has to be carried out, add 5 ml of HNO_3 to 1 000 g of sample (see <u>8.1</u> and <u>8.2</u>). When necessary, carry out filtration immediately on collection and before acidification.

Acidification of the water sample minimizes the loss of radioactive material from solution by adsorption. If the filtration of the sample is required, the acidification is performed afterward, otherwise radioactive material already adsorbed on the particulate material can be desorbed. Acidified samples may be stored for two months before being analysed (ISO 5667-3).

7 Instrument set up and calibration

7.1 Preparation of extractant scintillation cocktail

To prepare 500 ml of cocktail weigh in a beaker DARD PREVIEW

— Naphthalene	90.0 g:	(standards.iteh.ai)	
— Naphthalene	90,0 g,		

Add approximately 450 ml of xylene and stir for about 1 h with a magnetic stirrer. Transfer to a 500 ml tared flask, bring to volume with xylene, shake and filter, if necessary, with glass wool.

Transfer the cocktail to a dark bottle preferably equipped with a 10 ml dispenser.

7.2 Preparation of alpha emitter calibration source

Transfer an accurately known amount $m_{S(U)}$ of the ²³⁶U standard solution into a beaker. Add 100 ml of 0,7 M HNO₃ and extract twice, in a separatory funnel, by two 10 ml portions of scintillation cocktail. Transfer both cocktail portions into a scintillation vial and purge gently with argon or nitrogen to remove traces of ²²²Rn.

7.3 Preparation of beta emitter calibration source

Transfer an accurately known amount $m_{S(Sr)}$ of the ${}^{90}Sr$ standard solution at isotopic equilibrium with ${}^{90}Y$ into a beaker. Add 100 ml of 0,7 M HNO₃ and extract twice, in a separatory funnel, by two 10 ml portions of scintillation cocktail. Transfer both cocktail portions into a scintillation vial and purge gently with argon or nitrogen to remove traces of ${}^{222}Rn$.

7.4 Optimization of counting conditions

Set the alpha and beta counting window so that the energies of all the alpha and beta emitters of interest are covered.

Count for an appropriate period the alpha and beta counting standards in alpha/beta-discrimination, under different discriminator settings.

Determine the alpha (τ_{α}) and beta (τ_{β}) spillover parameter for each discriminator setting, as shown by Formulae (1) and (2):

$$\tau_{\alpha} = \frac{r_{\mathrm{S}\alpha,\beta} - r_{0,\beta}}{r_{\mathrm{S}\alpha,\mathrm{T}} - r_{0,\mathrm{T}}} \tag{1}$$

$$\tau_{\beta} = \frac{r_{\mathrm{S}\beta,\alpha} - r_{0,\alpha}}{r_{\mathrm{S}\beta,\mathrm{T}} - r_{0,\mathrm{T}}} \tag{2}$$

The best discriminator setting (working point) is chosen in order to minimize both τ_{α} and τ_{β} .

The selected counting conditions are used for all other subsequent counts (sample, blank and standards).

An example of discriminator setting determination is given in Annex A.

NOTE Good alpha-beta separation ($\tau < 0,10$) can be achieved by using a scintillation cocktail which is non-miscible with water and which contains naphthalene.

It is possible to choose a working point such that τ_{α} is slightly higher than τ_{β} ; this reduces both the detection efficiency and the background and minimizes the interference by any beta emitter. Since the same discriminator setting is used for both calibration and sample measurement, no correction for misclassification is necessary in the calculations.

7.5 Detection efficiency

The extraction efficiency and the counting efficiency are calculated together by extracting and counting a ²³⁶U standard solution (7.2). (standards.iteh.ai)

$$\varepsilon = \frac{r_{\rm S} - r_0}{A_{\rm S} m_{\rm S}}$$
 https://standards.iteh.ai/catalog/standards/sist/43cac5df-24a0-46e2-97ae-
c099e0edeb26/iso-13169-2018

Acceptance limits for efficiency should be defined.

The term ε includes both counting and extraction efficiencies and usually ranges from 90 % to 100 %.

A more accurate estimate of efficiency may be obtained by preparing and measuring five or more calibration samples.

Efficiencies should be verified with a periodicity established by the laboratory and whenever changes in materials (e.g. scintillation cocktail), analyst or when maintenance operations are performed on the scintillation counter. A verification or a recalibration is necessary when requisites of instrument quality control (see <u>Clause 11</u>) are not met.

7.6 Blank sample preparation and measurement

Prepare the blank sample by the same procedure used for test samples (see <u>Clause 8</u>). Acidify 95 ml of laboratory water with approximately 5 ml of concentrated HNO₃ (final concentration 0,7 M) and extract it twice, in a separatory funnel, by two 10 ml portion of scintillation cocktail. Transfer both cocktail portions into a scintillation vial and purge gently with argon or nitrogen to remove traces of ²²²Rn.

Acceptance limits for blank samples should be defined, also on the basis of the desired sensitivity. For this purpose the use of control charts is advisable^[8].

It is recommended to count blank samples for the same time length as the usual samples.

Blank measurements should be performed with a periodicity established by the laboratory (e.g. monthly) and whenever changes in materials (e.g. scintillation cocktail batch) or when maintenance

(3)