INTERNATIONAL STANDARD

ISO/IEC 14496-4

Second edition 2004-12-15 **AMENDMENT 45** 2016-11-15

Information technology — Coding of audio-visual objects —

Part 4: **Conformance testing**

AMENDMENT 45: Conformance **iTeh STTesting for the Multi-re**solution Frame (scompatible Stereo Coding with Depth Maps Extension of AVC

ISO/IEC 14496-4:2004/Amd 45:2016

https://standards.iteh.*Technologies*.de/Vinformation52f-Codage des objets audiovisuels bca1a01e623d/iso-icc-14496-4-2004-and-45-2016 Partie 4: Essai de conformité

> AMENDEMENT 45: Essai de conformité de cadre multi-résolution stéréo compatible avec l'extension carte de profondeur de l'AVC

Reference number ISO/IEC 14496-4:2004/Amd.45:2016(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 14496-4:2004/Amd 45:2016 https://standards.iteh.ai/catalog/standards/sist/a0375863-252f-4a77-8d4ebca1a01e623d/iso-iec-14496-4-2004-amd-45-2016

© ISO/IEC 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

Amendment 45 to ISO/IEC 14496-4:2004 was prepared by ISO/IEC JTC 1, *Information technology*, Subcommittee SC 29, *Coding of audio, picture, multimedia and hypermedia information*.

This Amendment establishes conformance test requirements for conformance to ITU-T Rec. H.264 | ISO/IEC 14496-10.

In this Amendment, additional text to ITU-T Rec. H.264 | ISO/IEC 14496-4 is specified for testing the conformance of ITU-T Rec. H.264.1 | ISO/IEC 14496-10 video decoders including, in particular, the MFC Depth High Profiles.

The following subclauses specify the normative tests for verifying conformance of ITU-T Rec. H.264 | ISO/IEC 14496-10 video bitstreams and decoders. These normative tests make use of test data (bitstream test suites) provided as an electronic annex to this document and of the reference software decoder specified in ITU-T Rec. H.264.2 | ISO/IEC 14496-5 with source code available in electronic format.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/IEC 14496-4:2004/Amd 45:2016</u> https://standards.iteh.ai/catalog/standards/sist/a0375863-252f-4a77-8d4ebca1a01e623d/iso-iec-14496-4-2004-amd-45-2016

Information technology — Coding of audio-visual objects —

Part 4: Conformance testing

AMENDMENT 45: Conformance Testing for the Multiresolution Frame Compatible Stereo Coding with Depth Maps Extension of AVC

In 10.6.5.7

Add the following text at the end of the subclause:

A decoder that conforms to the MFC Depth High profile at a specific level shall be capable of decoding the specified bitstreams in Table-AMD45-1. A decoder that conforms to the MFC Depth High profile shall also be capable of decoding all bitstreams that are required to be decoded by a Main, High, Stereo High and MFC High profile decoder of the same level. In addition to the specified bitstreams in Table-AMD-45-1, a decoder that conforms to the MFC Depth High profile shall be capable of decoding the bitstreams in Tables 1, 2, 5 and 7 that correspond to these requirements.

After 10.6.6.37.12

ISO/IEC 14496-4:2004/Amd 45:2016

Add the following texts://standards.iteh.ai/catalog/standards/sist/a0375863-252f-4a77-8d4e-

bca1a01e623d/iso-jec-14496-4-2004-amd-45-2016 10.6.6.38 Test bitstreams – MFC Depth High Profile

10.6.6.38.1 Test bitstream # MFCDDR-1

Specification: All slices are coded as I, P or B slices. Only the first picture is coded as an IDR access unit. Each view component contains only one slice. num_views_minus1 is equal to 1. NumDepthViews is equal to 2. The base layer texture view is in SbS frame compatible format. Both the texture view and depth view components are progressive. The coding order of texture view and depth view is specified as "T0D0D1T1", i.e. texture from view point 0, followed by depth from view point 0, followed by depth from view point 1, and followed by texture from view point 1. The width and the height of depth view components are equal to the texture view components. All NAL units are encapsulated into the byte stream format specified in ITU-T H.264 | ISO/IEC 14496-10, Annex B.

Functional stage: Decoding of the base and enhancement texture view component and depth view component and reconstruction of the enhanced resolution stereo texture views.

Purpose: Check that the decoder can properly decode the base and enhancement texture view components and the same resolution depth view components, and reconstruct the enhanced resolution stereo texture views.

10.6.6.38.2 Test bitstream # MFCDDR-2

Specification: All slices are coded as I, P or B slices. Only the first picture is coded as an IDR access unit. Each view component contains only one slice. num_views_minus1 is equal to 1. NumDepthViews is equal to 2. The base layer texture view is in SbS frame compatible format. Both the texture view and depth view components are progressive. The coding order of texture view and depth view is specified as "T0D0D1T1", i.e. texture from view point 0, followed by depth from view point 0, followed by depth from view point 1, and followed by texture from view point 1. The width and the height of the depth

view components are half of the texture view components. All NAL units are encapsulated into the byte stream format specified in ITU-T H.264 | ISO/IEC 14496-10, Annex B.

Functional stage: Decoding of the base and enhancement texture view component and depth view component and reconstruction of the enhanced resolution stereo texture views.

Purpose: Check that the decoder can properly decode the base and enhancement texture view components and lower resolution depth view components, and reconstruct the enhanced resolution stereo texture views.

10.6.6.38.3 Test bitstream #MFCDFLD-1

Specification: All slices are coded as I, P or B slices. Only the first picture is coded as an IDR access unit. Each view component contains only one slice. num_views_minus1 is equal to 1. NumDepthViews is equal to 2. The base layer texture view is in SbS frame compatible format. The coding order of texture view and depth view is specified as "T0D0D1T1", i.e. texture from view point 0, followed by depth from view point 1, and followed by texture from view point 1. field_pic_flag is equal to 1 in texture view components. field_pic_flag is equal to 0 in depth view components. All NAL units are encapsulated into the byte stream format specified in ITU-T H.264 | ISO/IEC 14496-10, Annex B.

Functional stage: Decoding of the base and enhancement interlaced texture view component and interlaced depth view component and reconstruction of the enhanced resolution stereo texture views.

Purpose: Check that the decoder can properly decode the interlaced base and enhancement texture view component and progressive depth components, and reconstruct the enhanced resolution stereo texture views.

10.6.6.38.4 Test bitstream #MFCDFL6Standards.iteh.ai)

Specification: All slices are coded as I, <u>Por B slices Only the first</u> picture is coded as an IDR access unit. Each view component contains only one slice num views minus is equal to 1. NumDepthViews is equal to 2. The base layer texture view is in SbS frame compatible format. The coding order of texture view and depth view is specified as "TODOD1T1", i.e. texture from view point 0, followed by depth from view point 1, and followed by texture from view point 1. field_pic_flag is equal to 1 for both texture view components and depth view components. All NAL units are encapsulated into the byte stream format specified in ITU-T H.264 | ISO/IEC 14496-10, Annex B.

Functional stage: Decoding of the base and enhancement interlaced texture view component and progressive depth view component and reconstruction of the enhanced resolution stereo texture views.

Purpose: Check that the decoder can properly decode the interlaced base and enhancement texture view component and interlaced depth view components, and reconstruct the enhanced resolution stereo texture views.

10.6.6.38.5 Test bitstream #MFCDTDC-1

Specification: All slices are coded as I, P or B slices. Only the first picture is coded as an IDR access unit. Each view component contains only one slice. num_views_minus1 is equal to 1. NumDepthViews is equal to 2. The base layer texture view is in SbS frame compatible format. Both the texture view and depth view components are progressive. The coding order of texture view and depth view is specified as "T0D0T1D1", i.e. texture from view point 0, followed by depth from view point 0, followed by texture from view point 1. All NAL units are encapsulated into the byte stream format specified in ITU-T H.264 | ISO/IEC 14496-10, Annex B.

Functional stage: Decoding of the base and enhancement texture view component and depth view component and reconstruction of the enhanced resolution stereo texture views.

Purpose: Check that the decoder can properly decode the base and enhancement texture view components and depth view components with various coding order, and reconstruct the enhanced resolution stereo texture views.

10.6.6.38.6 Test bitstream #MFCDTDC-2

Specification: All slices are coded as I, P or B slices. Only the first picture is coded as an IDR access unit. Each view component contains only one slice. num_views_minus1 is equal to 1. NumDepthViews is equal to 2. The base layer texture view is in SbS frame compatible format. Both the texture view and depth view components are progressive. The coding order of texture view and depth view is specified as "T0T1D0D1", i.e. texture from view point 0, followed by texture from view point 1, followed by depth from view point 0, followed by texture from view point 1, followed by depth stream format specified in ITU-T H.264 | ISO/IEC 14496-10, Annex B.

Functional stage: Decoding of the base and enhancement texture view components and depth view component and reconstruction of the enhanced resolution stereo texture views.

Purpose: Check that the decoder can properly decode the base and enhancement texture view components and depth view components with various coding order, and reconstruct the enhanced resolution stereo texture views.

10.6.6.38.7 Test bitstream #MFCDMFC-1

Specification: All slices are coded as I, P or B slices. Only the first picture is coded as an IDR access unit. Each view component contains only one slice. num_views_minus1 is equal to 1. NumDepthViews is equal to 2. Both the texture view and depth view components are progressive. The coding order of texture view and depth view is specified as "T0D0D1T1", i.e. texture from view point 0, followed by depth from view point 1, and followed by texture from view point 1. mfc_format_idc is set to 1, i.e. the base layer texture view is in TaB frame compatible format. All NAL units are encapsulated into the byte stream format specified in TU-T H.264 | ISO/IEC 14496-10, Annex B.

Functional stage: Decoding of the base and enhancement texture view component and depth view component and reconstruction of the enhanced resolution stereo texture views.

Purpose: Check that the decoder can properly decode the base and enhancement texture and depth view components with various base layer texture (frame compatible format, and reconstruct the enhanced resolution stereo texture views.

Table AMD 45.1

Add the following after Table AMD45.1:

Categories	Bitstream	Donated by	File Name	MFC Depth High	Level	Frame Rate (Frame/ Sec)
Depth resolution	MFCDDR-1	Dolby	MFCDDR-1	Х	4.1	25p
	MFCDDR-2	Dolby	MFCDDR-2	Х	4.1	25p
Interlaced coding tools	MFCDFLD-1	Dolby	MFCDFLD-1	Х	4.1	50i
	MFCDFLD-2	Dolby	MFCDFLD-2	Х	4.1	50i
Texture and depth coding order	MFCDTDC-2	Dolby	MFCDTDC-2	X	4.1	25p
	MFCDTDC-2	Dolby	MFCDTDC-2	X	4.1	25p
MFC format	MFCDMFC-1	Dolby	MFCDMFC-1	Х	4.1	25p

Table AMD45.1 — Bitstreams for the MFC Depth High profile

Attach the corresponding electronic attachment.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO/IEC 14496-4:2004/Amd 45:2016</u> https://standards.iteh.ai/catalog/standards/sist/a0375863-252f-4a77-8d4ebca1a01e623d/iso-iec-14496-4-2004-amd-45-2016

ICS 35.040 Price based on 3 pages

© ISO/IEC 2016 – All rights reserved