

SLOVENSKI STANDARD SIST EN IEC 60891:2022

01-februar-2022

Nadomešča: SIST EN 60891:2011

Fotonapetostne naprave - Postopki za temperaturno in sevalno korekcijo izmerjenih karakteristik I-U

Photovoltaic devices - Procedures for temperature and irradiance corrections to measured I-V characteristics

iTeh STANDAR

Verfahren zur Umrechung von gemessenen Strom-Spannungs-Kennlinien von photovoltaischen Bauelementen auf andere Temperaturen und Bestrahlungsstärken

Dispositifs photovoltaïques - Procedures pour les corrections en fonction de la température et de l'éclairement à appliquer aux caractéristiques I-V mesurées

SIST EN IEC 60891:2022

Ta slovenski standard je istoveten z: EN IEC 60891:2021 -2022 177a0cc6e

ICS:

27.160 Sončna energija Solar energy engineering

SIST EN IEC 60891:2022

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN IEC 60891:2022

SIST EN IEC 60891:2022

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN IEC 60891

December 2021

ICS 27.160

Supersedes EN 60891:2010 and all of its amendments and corrigenda (if any)

English Version

Photovoltaic devices - Procedures for temperature and irradiance corrections to measured I-V characteristics (IEC 60891:2021)

Dispositifs photovoltaïques - Procédures pour les corrections en fonction de la température et de l'éclairement à appliquer aux caractéristiques I-V mesurées (IEC 60891:2021) Verfahren zur Umrechnung von gemessenen Strom-Spannungs-Kennlinien von photovoltaischen Bauelementen auf andere Temperaturen und Bestrahlungsstärken (IEC 60891:2021)

This European Standard was approved by CENELEC on 2021-12-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom 1-4a3f-807b-1177a0cc6e95/sist-en-iec-60891-2022

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

European foreword

The text of document 82/1936/FDIS, future edition 3 of IEC 60891, prepared by IEC/TC 82 "Solar photovoltaic energy systems" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 60891:2021.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2022–09–01 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2024–12–01 document have to be withdrawn

This document supersedes EN 60891:2010 and all of its amendments and corrigenda (if any).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website.

iTeb STANDARD PREVIEW

The text of the International Standard IEC 60891:2021 was approved by CENELEC as a European Standard without any modification.

SIST EN IEC 60891:2022

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cenelec.eu</u>.

Publication	<u>Year</u>	Title	<u>EN/HD</u>	Year
IEC 60904-1	-	Photovoltaic devices - Part Measurement of photovoltaic curr voltage characteristics	1:EN IEC 60904-1 ent-	-
IEC/TS 60904-1-2		Measurement of current-volt characteristics of bifacial photovoltaic (0	
IEC 60904-2	-	devices Photovoltaic devices i Part Requirements for photovoltaic refere devices SIST EN IEC 60891:2022	2:EN 60904-2 nce	-
IEC 60904-7	- https:// 9461-4	Photovoltaic devices Part 71 Compute	tionENJEC 60904-7 0891-2022	-
IEC 60904-8	-	Photovoltaic devices - Part Measurement of spectral responsivity photovoltaic (PV) device	8:EN 60904-8 of a	-
IEC 60904-9	-	Photovoltaic devices - Part 9: Classifica of solar simulator characteristics	tionEN IEC 60904-9	-
IEC 60904-10	2020	Photovoltaic devices - Part 10: Method linear dependence and linear measurements		2020
IEC 61215-2	-	Terrestrial photovoltaic (PV) module Design qualification and type approv Part 2: Test procedures		-
IEC/TS 61836	-	Solar photovoltaic energy systems Terms, definitions and symbols	S	-

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN IEC 60891:2022

Edition 3.0 2021-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

iTeh STANDARD

Photovoltaic devices – Procedures for temperature and irradiance corrections to measured I-V characteristics

Dispositifs photovoltaïques – Procedures pour les corrections en fonction de la température et de l'éclairement à appliquer aux caractéristiques I-V mesurées SIST EN IEC 60891:2022

https://standards.iteh.ai/catalog/standards/sist/d6019599-9461-4a3f-807b-1177a0cc6e95/sist-en-iec-60891-2022

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 27.160

ISBN 978-2-8322-1036-0

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

F	DREWO	RD	4			
1	Scop	e	6			
2	Norm	Normative references				
3	Term	s and definitions, symbols and abbreviated terms	7			
4	-					
	4.1	General	8			
	4.2	Correction procedure 1	11			
	4.3	Correction procedure 2	12			
	4.4	Correction procedure 3	14			
	4.4.1	-	14			
	4.4.2	Correction for the irradiance and temperature from two measured <i>I</i> - <i>V</i> curves	14			
	4.4.3	Correction to various irradiances and temperatures from three <i>I</i> - <i>V</i> curves	17			
	4.4.4	Correction to various irradiances and temperatures from four measured <i>I-V</i> curves	17			
	4.5	Correction procedure 4	18			
5	Dete	rmination of temperature coefficients	20			
	5.1	GeneralApparatusPREVIEW	20			
	5.2					
	5.3	Procedure in natural or steady-state simulated sunlight	22			
	5.4	Procedure with a pulsed solar simulator. iteh.ai)				
6	5.5	Calculation of temperature coefficients				
6		rmination of internal series resistance Rs and Ris2				
	6.1	General https://standards.iteh.ai/catalog/standards/sist/d6019599-				
	6.2	Determination of RS-in correction procedures chaind-40891-2022				
	6.3	Determination of B_1 and B_2 in correction procedure 2				
	6.4	Determination of <i>R</i> ' _S in correction procedure 2	28			
	6.5	Determination of R_S in correction procedure 4	30			
7	Dete	rmination of the curve correction factor κ and κ'	31			
	7.1	General	31			
	7.2	Procedure	31			
8	Repo	orting	32			
Ar	nnex A (informative) Alternative procedures for series resistance determination	34			
	A.1	General	34			
	A.2	Differential resistance at V _{OC} against inverse irradiance method	34			
Bi	bliograp	bhy	35			
		- Example of the correction of the <i>I-V</i> characteristics by formulae (10) and	16			
siı	multane	- Schematic diagram of the relation of G_3 and T_3 which can be chosen in the ous correction for irradiance and temperature, for a fixed set of T_1 , G_1 , T_2 ,				
ar	nd <i>G</i> 2 by	/ formulae (12) and (13)	16			

IEC 60891:2021 © IEC 2021

Figure 3 – Schematic diagram of the processes for correcting the <i>I</i> - <i>V</i> characteristics to various ranges of irradiance and temperature based on three measured characteristics	17
Figure 4 – Schematic diagram of the processes for correcting the <i>I</i> - <i>V</i> characteristics to various ranges of irradiance and temperature based on four measured characteristics	18
Figure 5 – Example positions for measuring the temperature of the test module behind the cells	21
Figure 6 – Determination of internal series resistance	26
Figure 7 – Determination of internal series resistance when the corrected <i>I</i> - <i>V</i> characteristics intersect	27
Figure 8 – Determination of irradiance correction factors B_1 and B_2 and internal series resistance, R'_{S}	29
Figure 9 – Determination of internal series resistance of a PV module from a single <i>I-V</i> curve	31
Figure 10 – Determination of curve correction factor	32
Figure A.1 – Determination of internal series resistance	34

Table 1 – Overview of correction procedures for irradiance corrections (i.e. $T_1 = T_2$)
Table 2 – Overview of correction procedures for temperature corrections (i.e. $G_1 = G_2$) 10

PREVIEW (standards.iteh.ai)

SIST EN IEC 60891:2022

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PHOTOVOLTAIC DEVICES – PROCEDURES FOR TEMPERATURE AND IRRADIANCE CORRECTIONS TO MEASURED I-V CHARACTERISTICS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60891 has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

This third edition cancels and replaces the second edition published in 2009. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- adds guidance on which correction procedure shall be used depending on application;
- introduces translation procedure 4 applicable to c-Si technologies with unknown temperature coefficients;
- introduces various clarifications in existing procedures to improve measurement accuracy and reduce measurement uncertainty;
- adds an informative annex for supplementary methods that can be used for series resistance determination.

IEC 60891:2021 © IEC 2021

- 5 -

The text of this International Standard is based on the following documents:

FDIS	Report on voting	
82/1936/FDIS	82/1957/RVD	

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed, •
- withdrawn, •
- replaced by a revised edition, or STANDARD
- amended.

PREVIEW (standards.iteh.ai)

SIST EN IEC 60891:2022

PHOTOVOLTAIC DEVICES – PROCEDURES FOR TEMPERATURE AND IRRADIANCE CORRECTIONS TO MEASURED I-V CHARACTERISTICS

1 Scope

This document defines procedures to be followed for temperature and irradiance corrections to the measured I-V (current-voltage) characteristics (also known as I-V curves) of photovoltaic (PV) devices. It also defines the procedures used to determine factors relevant to these corrections. Requirements for I-V measurement of PV devices are laid down in IEC 60904-1 and its relevant subparts.

The PV devices include a single solar cell with or without a protective cover, a sub-assembly of solar cells, or a module. A different set of relevant parameters for *I-V* curve correction applies for each type of device. The determination of temperature coefficients for a module (or sub-assembly of cells) may be calculated from single cell measurements, but this is not the case for the internal series resistance and curve correction factor, which should be separately measured for a module or subassembly of cells. Refer to Annex A for alternative procedures for series resistance determination.

The use of *I-V* correction parameters is valid for the PV device for which they have been measured. Variations may occur within a production lot or the type of class.

² Normative references (standards.iteh.ai)

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) appliesttps://standards.iteh.ai/catalog/standards/sist/d6019599-

9461-4a3f-807b-1177a0cc6e95/sist-en-iec-60891-2022

IEC 60904-1, Photovoltaic devices – Part 1: Measurements of photovoltaic current-voltage characteristics

IEC TS 60904-1-2, Photovoltaic devices – Part 1-2: Measurement of current-voltage characteristics of bifacial photovoltaic (PV) devices

IEC 60904-2, Photovoltaic devices – Part 2: Requirements for reference solar devices

IEC 60904-7, Photovoltaic devices – Part 7: Computation of the spectral mismatch correction for measurements of photovoltaic devices

IEC 60904-8, Photovoltaic devices – Part 8: Measurement of spectral responsivity of a photovoltaic (PV) device

IEC 60904-9, Photovoltaic devices – Part 9: Classification of solar simulator characteristics

IEC 60904-10:2020, *Photovoltaic devices – Part 10: Methods of linear dependence and linearity measurements*

IEC 61215-2, Terrestrial photovoltaic (PV) modules – Design qualification and type approval – Part 2: Test procedures

IEC TS 61836, Solar photovoltaic energy systems – Terms, definitions, and symbols

- 7 -

IEC 60891:2021 © IEC 2021

3 Terms and definitions, symbols and abbreviated terms

For the purposes of this document, the terms and definitions given in IEC TS 61836, together with the following, apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1

*B*₁

irradiance correction factor for open-circuit voltage which is linked with the diode thermal voltage, $V_{\rm t}$ of the p-n junction and $n_{\rm S}$

Note 1 to entry: It is used in correction procedure 2.

3.2

B₂

irradiance correction factor for open-circuit voltage which accounts for non-linearity of V_{OC} with irradiance scaling **iTeh STANDARD**

(standards.iteh.ai)

Note 1 to entry: It is used in correction procedure 2.

3.3

DUT device under test

3.4

SIST EN IEC 60891:2022

R_S internal series resistance of the DUT employed by correction procedures 1 and 4 9461-4a3f-807b-1177a0cc6e95/sist-en-iec-60891-2022

3.5

R's

internal series resistance of the DUT employed by correction procedure 2

Note 1 to entry: Although determined by a different method than R_{s} , both quantities share the same physical meaning and therefore their values for the same DUT are similar.

3.6

n_S

number of cells serially connected in the DUT

3.7 a

interpolation constant employed in correction procedure 3, that has a relation with the irradiance and temperature

3.8

3

product of ideality factor of the DUT with the bandgap of the photovoltaic material divided by electron's elementary charge

Note 1 to entry: It is used in correction procedure 4.