
**Microbeam analysis — Methods of
specimen preparation for analysis of
general powders using WDS and EDS**

*Analyse par microfaisceaux — Méthodes de préparation des
échantillons pour l'analyse des particules*

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 20720:2018](#)

<https://standards.iteh.ai/catalog/standards/iso/b6d392e5-e6ad-45a3-9174-cd806f599b4d/iso-20720-2018>

Reference number
ISO 20720:2018(E)

© ISO 2018

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 20720:2018](#)

<https://standards.iteh.ai/catalog/standards/iso/b6d392e5-e6ad-45a3-9174-cd806f599b4d/iso-20720-2018>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Abbreviated terms	1
5 Analytical purposes and methods of specimen preparation for particle analysis[1]	1
5.1 Methods of specimen preparation for particle analysis	1
5.2 Description of preparation methods	2
5.2.1 Analysis of whole particles or surface of particles	2
5.2.2 Analysis of cross-section of particles	4
5.3 Choosing preparation methods	5
6 Electric conductivity processing	6
Annex A (informative) Examples of X-ray strength dependency on tablet-forming pressure	7
Annex B (informative) Example of X-ray strength dependency on tablet-forming particle size	8
Bibliography	9

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 20720:2018](#)

<https://standards.iteh.ai/catalog/standards/iso/b6d392e5-e6ad-45a3-9174-cd806f599b4d/iso-20720-2018>

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html

This document was prepared by Technical Committee ISO/TC 202, *Microbeam analysis*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

ISO 20720:2018

<https://standards.iteh.ai/catalog/standards/iso/b6d392e5-e6ad-45a3-9174-cd806f599b4d/iso-20720-2018>

Introduction

Although there are many applications of electron probe microanalysis (EPMA) and scanning electron microscopy (SEM) for powder analysis, there are some difficulties, especially in the case of individual particle analysis, as follows:

- (a) the prevention of agglomeration of particles during preparation of the specimen;
- (b) the fixation of specimens, especially when there is a small amount of tiny particles, either for surface analysis or cross-section analysis;
- (c) the cross-section preparation in the case of small particles with core-shell structures;
- (d) the protection of particle surfaces from damage by electron beam irradiation in cases where the surfaces of particles are sensitive;
- (e) the counteraction of charging of the specimen under electron radiation to prevent the powder from scattering or dispersing due to electrical repulsion;
- (f) the interpretation of qualitative and/or quantitative analysis results when the X-ray generation volume is larger than that of the particles.

Even in the case of elemental compositional analysis of a powder, the specimen preparation can affect the results of analysis, because the roughness and/or void space within a particle aggregate or agglomerate can impact X-ray intensity.

To cope with these difficulties, the standardization of specimen preparation for particle analysis is very important.

ITEH Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 20720:2018](#)

<https://standards.iteh.ai/catalog/standards/iso/b6d392e5-e6ad-45a3-9174-cd806f599b4d/iso-20720-2018>

