INTERNATIONAL STANDARD

First edition 2017-10

Natural gas — Determination of sulfur compounds — Determination of total sulfur content by ultraviolet fluorescence method

Gaz natural — Détermination des composés soufrés — Détermination de la teneur en soufre total par la méthode par fluorescence UV **iTeh STANDARD PREVIEW**

(standards.iteh.ai)

<u>ISO 20729:2017</u> https://standards.iteh.ai/catalog/standards/sist/1256fce6-1b41-4627-8538e01d3839b144/iso-20729-2017

Reference number ISO 20729:2017(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 20729:2017</u> https://standards.iteh.ai/catalog/standards/sist/1256fce6-1b41-4627-8538e01d3839b144/iso-20729-2017

© ISO 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Forew	rord	iv
Introduction		v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Test conditions	1
5	Principle of the method	2
6	Instruments	
7	Reagents	
8	Sampling	
9	Sample analysis 9.1 Preparation of instrument	3
	9.2 Calibration curve	
10	Analysis 10.1 Test 10.2 Calculation	4 4
11	Precision iTeh STANDARD PREVIEW 11.1 General 11.2 Repeatability 11.3 Reproducibility	5 5
	11.2 Repeatability	5 5
Annex A (informative) Example of the statistical analysis of precision experiments 6		
Biblio	graphy	10

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: <u>www.iso.org/iso/foreword.html</u>.

This document was prepared by Technical Committee ISO/TC 193, *Natural gas*, Subcommittee SC 1, *Analysis of natural gas*.

<u>ISO 20729:2017</u> https://standards.iteh.ai/catalog/standards/sist/1256fce6-1b41-4627-8538e01d3839b144/iso-20729-2017

Introduction

Four methods for determination of sulfur compounds in natural gas already exist as International Standards:

- ISO 6326-3, Natural gas Determination of sulfur compounds Part 3: Determination of hydrogen sulfide, mercaptan sulfur and carbonyl sulfide sulfur by potentiometry;
- ISO 6326-5, Natural gas Determination of sulfur compounds Part 5: Lingener combustion method;
- ISO 19739, Natural gas Determination of sulfur compounds using gas chromatography;
- ISO 16960, Natural gas Determination of sulfur compounds —Determination of total sulfur by oxidative microcoulometry method.

Ultraviolet fluorescence method is more efficient method compared with potentiometry, because it can measure the result value at once. It is also environment friendly compared with potentiometry, Lingener and oxidative microcoulometry methods which use toxic and hazardous reagents. Moreover, it is much more convenient and stable than existing natural gas total sulfur analysis method, because the method is sensitive to less number of interference factors.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 20729:2017</u> https://standards.iteh.ai/catalog/standards/sist/1256fce6-1b41-4627-8538e01d3839b144/iso-20729-2017

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 20729:2017</u> https://standards.iteh.ai/catalog/standards/sist/1256fce6-1b41-4627-8538e01d3839b144/iso-20729-2017

Natural gas — Determination of sulfur compounds — Determination of total sulfur content by ultraviolet fluorescence method

WARNING — The majority of sulfur compounds are extremely toxic and thus present a serious health hazard if handled without precautions.

1 Scope

This method applies to the determination of total sulfur content in natural gas expressed as sulfur mass concentration ranging from 1 mg/m³ to 200 mg/m³. Natural gas with sulfur contents above 200 mg/m³ can be analysed after dilution with a suitable sulfur-free solvent.

Normative references 2

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 6141, Gas analysis – Requirements for certificates for calibration gases and gas mixtures ISO 10715, Natural gas — Sampling gaidelinesrds.iteh.ai)

ISO 20729:2017

Terms and definitions https://standards.iteh.ai/catalog/standards/sist/1256fce6-1b41-4627-8538-3

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

ISO Online browsing platform: available at https://www.iso.org/obp

IEC Electropedia: available at http://www.electropedia.org/

3.1

absorption

extraction of one or more components from a mixture of gases when brought into contact with a liquid

3.2

adsorption

retention, by physical or chemical forces of gas molecules, dissolved substances, or liquids by the surfaces of solids or liquids which they are in contact

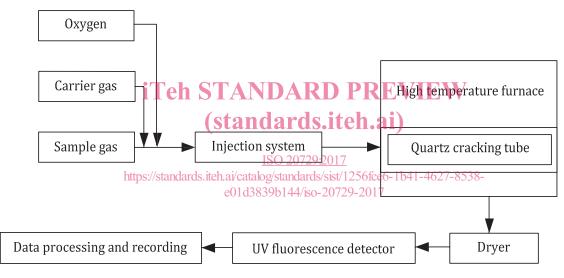
3.3

sorption

process in which one substance takes up or holds another (by either absorption)

Test conditions 4

The test conditions are the same as the calibration conditions.


The reference conditions of the measurement results are the same as those on the calibration gas certificates.

NOTE The reference conditions on the calibration gas certificates usually are 101.325 kPa, 20 °C or 101.325 kPa, 15 °C or 101.325 kPa, 0 °C

5 Principle of the method

Typical gas samples are injected by sampling system into a high temperature combustion tube where sulfur is oxidized to sulfur dioxide (SO₂) in an oxygen-enriched atmosphere. The combustion gases are then exposed to ultraviolet (UV) light which causes the SO₂ to be converted to excited SO₂* after absorbing energy from the UV light. Fluorescence emitted from the excited SO₂* as it returns to ground state is detected by a photomultiplier. The resultant signal is a measure of the sulfur content in the sample (see Figure 1.)

6 Instruments

6.1 The main components of the instruments are shown in <u>Figure 1</u>.

Figure 1 — Schematic diagram of the ultraviolet fluorescence instrument

6.2 Injection system, providing a stable flow of carrier gas and sample gas and can control the injection port open or closed. Sample volume, flow rate and pressure are determined according to the instrument operation specification.

6.3 High temperature furnace, with stable temperature maintained at 1 000 °C \pm 50 °C. This temperature is sufficient to pyrolyze the entire sample and oxidize sulfur to SO₂.

6.4 Quartz cracking tube

The sample is directly injected into the heated oxidation zone of the furnace, and mixed with oxygen, which ensures complete combustion of the sample. The quartz cracking tube may have bypasses in order to inject oxygen and carrier gas.

6.5 Dryer, which is used to remove the water vapour formed during sample combustion. This can be achieved by a membrane drying tube, or an osmotic dryer which removes water by selective permeation.

6.6 UV fluorescence detector, a quantitative detector which can measure the fluorescence emitted from SO₂ by UV light.

6.7 Data processing and recording apparatus, recorder or equivalent electronic data recording apparatus, integrator, computer.

7 Reagents

8

7.1 **Carrier Gas**, argon or helium with purity of not less than 99,99 % (by volume fraction).

NOTE Nitrogen is not selected to avoid the formation of nitrogen oxygen compounds under electric discharge or high temperature.

7.2 Oxygen, whose purity is not less than 99,99 % (by volume fraction).

NOTE Air is not selected to avoid the formation of nitrogen oxygen compounds under electric discharge or high temperature.

7.3 Calibration gases, which perform regular calibration using working standard gas mixtures certified in accordance with ISO 6142 or with ISO 6144 or with ISO 6145. The working standard gas mixtures shall contain appropriate concentrations and cover the analytic range of the analyser. And the mixtures should be either H_2S in nitrogen or methane or GOS in nitrogen or methane.

A certificate of mixture according to ISO 6141 should always be available with the cylinder.

<u>ISO 20729:2017</u>

https://standards.iteh.ai/catalog/standards/sist/1256fce6-1b41-4627-8538e01d3839b144/iso-20729-2017

Sampling shall be performed in accordance with ISO 10715.

All the materials used for sampling equipment and transfer lines shall be inert to sulfur compounds. For direct sampling, it should include sample conditioning to ensure the gas injected into the analysis unit does not contain any liquid water, dust or liquid hydrocarbons.

NOTE Due to the strong tendency of sulfur compounds to be adsorbed by different materials, it is important to purge the instrument and all the surfaces from the cylinder valve to the injection point for 30 s to 2 min with the sample gas before the analysis, in order to avoid sorption effects with different samples or with the calibration mixture.

9 Sample analysis

Sampling

9.1 Preparation of instrument

Open the valve of the carrier gas and oxygen cylinder then start up the instrument, allow the temperature of the furnace to stabilize at the specified value (1 000 °C \pm 50 °C). Check and adjust all the operating parameters according to the manufacturer's instructions.

9.2 Calibration curve

Perform regular calibration using reference gases (see 7.3), that shall be an appropriate number of concentrations of sulfur compounds in methane or nitrogen gas depending upon the estimated sulfur concentration of the sample gas.