INTERNATIONAL STANDARD

Third edition 2016-03-15

Liquid petroleum products — Determination of hydrocarbon types and oxygenates in automotivemotor gasoline and in ethanol (E85) automotive fuel — Multidimensional gas chromatography method

iTeh STANDARD PREVIEW Produits pétroliers liquides — Détermination des groupes **(Stähydrocarburgs et des composés oxygénés de l'essence pour moteurs** automobiles et du carburant pour automobiles éthanol (E85) — Méthode par chromatographie multidimensionelle en phase gazeuse

https://standards.iteh.ai/catalog/standards/sist/b101b8de-8bdf-421e-90cb-79d540e06181/iso-22854-2016

Reference number ISO 22854:2016(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22854:2016</u> https://standards.iteh.ai/catalog/standards/sist/b101b8de-8bdf-421e-90cb-79d540e06181/iso-22854-2016

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Forew	ord	iv
Introduction		
1	Scope	1
2	Normative references	
3	Terms and definitions	
	Principle	
4	-	
5	Reagents and materials	
6	Apparatus	4
7	Sampling	5
8	Procedure	5
	8.1 Conditioning	
	8.2 Sample preparation	
	8.2.1 Procedure B only – Sample dilution	
	8.2.2 Procedure A and B – Sample cooling	5 F
	8.3 Test sample injection volume8.4 Verification of the apparatus and test conditions	
	8.5 Validation	
	 8.5 Validation. 8.6 Preparation of the test sample A RD PREVIEW. 	
	8.7 Preparation of the apparatus and test conditions	6
9	Calculation (standards.iteh.ai)	6
2	9.1 General	6
	9.2 Calculation as % (<i>m/m</i>) <u>ISO 22854:2016</u>	
	9.1 General 9.2 Calculation as % (m/m). ISO 22854:2016 9.3 Calculation as % (V/V) catalog/standards/sist/b101b8de-8bdf-421e-90cb-	7
	9.4 Calculation of total oxygen content in % (m/m)	9
	9.5 Data report according to automotive motor gasoline specification	9
10	Expression of results	
	10.1 Procedure A	
	10.2 Procedure B	
11	Precision	
	11.1 General	
	11.2 Repeatability, <i>r</i>	
	11.3 Reproducibility, <i>R</i>	
12	Test report	
Annex	A (informative) Instrument specifications	
Annex B (informative) Examples of typical chromatograms		
Bibliography		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. <u>www.iso.org/directives</u>

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. <u>www.iso.org/patents</u>

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ASO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 28, *Petroleum products and related products of synthetic or biological origin*.

<u>ISO 22854:2016</u>

This third edition cancels and replaces the second/edition/(ISO 22854:2014), which contained a serious mistake in the scope regarding the levels of oxygen content: 854-2016

Introduction

This International Standard is a small update of the second edition (ISO 22854:2014), which in turn was a revision to extend the scope of the first edition. Originally ISO 22854:2008 (and its predecessor EN 14517:2004) was used for determination of saturated, olefinic, aromatic and oxygenated hydrocarbons in automotive motor gasoline according to European fuel specifications. Recent round-robin work has shown that the scope of the method can be updated without alteration to include petrol with higher oxygen percentages than mentioned in the first edition and will now be applicable for automotive motor gasoline up to and including E10.

An interlaboratory study organized by CEN has shown that the method can also be used for highethanol gasoline [also called ethanol (E85) automotive fuel], provided that the sample is diluted with a component that will not interfere with any of the components or group of components that need to be analysed. Details of how to perform such analysis are given in 8.2.

The derived precision data for methanol do not comply with the precision calculation as presented in this International Standard. No precision calculation for methanol has been established as the need for such data has not been expressed. If methanol is present in the automotive motor gasoline sample, it is recommended that its contents is verified by the use of an appropriate test method, for instance as given in EN 228^[1].

The test method described in this International Standard is harmonized with ASTM D6839^[2].

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22854:2016</u> https://standards.iteh.ai/catalog/standards/sist/b101b8de-8bdf-421e-90cb-79d540e06181/iso-22854-2016

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22854:2016</u> https://standards.iteh.ai/catalog/standards/sist/b101b8de-8bdf-421e-90cb-79d540e06181/iso-22854-2016

Liquid petroleum products — Determination of hydrocarbon types and oxygenates in automotivemotor gasoline and in ethanol (E85) automotive fuel — Multidimensional gas chromatography method

1 Scope

This International Standard specifies the gas chromatographic (GC) method for the determination of saturated, olefinic and aromatic hydrocarbons in automotive motor gasoline and ethanol (E85) automotive fuel. Additionally, the benzene content, oxygenate compounds and the total oxygen content can be determined.

NOTE 1 For the purposes of this document, the terms % (m/m) and % (V/V) are used to represent respectively the mass fraction, μ , and the volume fraction, φ .

This International Standard defines two procedures, A and B.

Procedure A is applicable to automotive motor gasoline with total aromatics of up to 50 % (V/V); total olefins from about 1,5 % (V/V) up to 30 % (V/V); oxygenates from 0,8 % (V/V) up to 15 % (V/V); total oxygen from about 1,5 % (m/m) to about 3,7 % (n/m); and benzene of up to 2 % (V/V). The system can be used for ethers with 5 or more C atoms up to 22 % (V/V) but the precision has not been established up to this level. (**Standards.iten.al**)

Although this test method can be used to determine higher-olefin contents of up to 50 % (V/V), the precision for olefins was tested only in the range from about 1.5 % (V/V) to about 30 % (V/V).

Although specifically developed for the analysis of automotive motor gasoline that contains oxygenates, this test method can also be applied to other hydrocarbon streams having similar boiling ranges, such as naphthas and reformates.

NOTE 2 For Procedure A, precision data have been established for the oxygenate compounds in automotive motor gasoline samples containing ethyl-tert-butyl ether (ETBE), methyl-tert-butyl ether (MTBE), tert-amylmethyl ether (TAME), *iso*-propanol, iso-butanol, tert-butanol, methanol and ethanol. The derived precision data for methanol do not comply with the precision calculation as presented in this International Standard. Applicability of this International Standard has also been verified for the determination of *n*-propanol, acetone, and di-isopropyl ether (DIPE). However, no precision data have been determined for these compounds.

Procedure B describes the procedure for the analysis of oxygenated groups (ethanol, methanol, ethers, C3 – C5 alcohols) in ethanol (E85) automotive fuel containing ethanol between 50 % (V/V) and 85 % (V/V). The gasoline is diluted with an oxygenate-free component to lower the ethanol content to a value below 20 % (V/V) before the analysis by GC. If the ethanol content is unknown, it is advisable to use a dilution of 4:1 when analysing the sample.

The sample can be fully analysed including hydrocarbons. Precision data for the diluted sample are only available for the oxygenated groups.

NOTE 3 For Procedure B, the precision can be used for an ethanol fraction from about 50 % (V/V) up to 85 % (V/V). For the ether fraction, the precision as specified in Table 6 can be used for samples containing at least 11 % (V/V) of ethers. For the higher alcohol fraction, too few data were obtained to derive a full precision statement and the data presented in Table 6 are therefore only indicative.

NOTE 4 While developing this test method, the final boiling point was limited to 215 °C.

NOTE 5 An overlap between C9 and C10 aromatics can occur. However, the total is accurate. Isopropyl benzene is resolved from the C8 aromatics and is included with the other C9 aromatics.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3170, Petroleum liquids — Manual sampling

ISO 3171, Petroleum liquids — Automatic pipeline sampling

ISO 4259, Petroleum products — Determination and application of precision data in relation to methods of test

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

hydrocarbon group

family of hydrocarbons such as saturated hydrocarbons, olefinic hydrocarbons, etc

3.1.1

saturated hydrocarbon

saturate

EXAMPLE

type of hydrocarbon that contains no double bonds with a carbon number of 3 to 12

n-Paraffins, *iso*-paraffins, naphthenes and poly-naphthenes. (standards.iteh.ai)

3.1.2

olefinic hydrocarbon

ISO 22854:2016

olefin https://standards.iteh.ai/catalog/standards/sist/b101b8de-8bdf-421e-90cbtype of hydrocarbon that contains double or triple bonds with a carbon number of 3 to 10

EXAMPLE *n*-Olefins, *iso*-olefins and cyclic olefins.

3.1.3

aromatic hydrocarbon

aromatic

type of cyclic hydrocarbon with alternating double and single bonds between carbon atoms forming the rings

EXAMPLE Benzene, toluene and higher homologous series with a carbon number of 6 to 10 and naphthalenes, with a carbon number of up to 12.

3.2

oxygenate

oxygenated compound type of hydrocarbon that contains an oxyge

type of hydrocarbon that contains an oxygen group, the addition of which is allowed according to current petrol specifications

EXAMPLE Alcohols and ethers.

Note 1 to entry: See Clause 1, Note 2.

3.3

partial group

PG

one carbon number in an individual group, being either a single compound like toluene or an isomeric mixture

EXAMPLE *n*-Butane and *iso*-butane.

4 Principle

4.1 Procedure A and Procedure B use the same separation technique and analysis procedure. The difference between the parts is that for Procedure B the sample is diluted. The diluting solvent is not considered in the integration. This makes it possible to report the results of the undiluted sample after normalization to 100 %.

4.2 The automotive motor gasoline sample being analysed is separated into hydrocarbon groups by means of GC analysis using special column-coupling and column-switching procedures.

The automotive motor gasoline sample is injected into the GC system and, after vaporization, is separated into the different groups. Detection is always done by a flame ionization detector (FID).

4.3 The mass concentration of each detected compound or hydrocarbon group is determined by the application of relative response factors (see 9.2) to the area of the detected peaks, followed by normalization to 100 %. For automotive motor gasoline samples containing oxygenates that cannot be determined by this test method, the hydrocarbon results are normalized to 100 % minus the value of oxygenates as determined by another method. The liquid volume concentration of each detected compound or hydrocarbon group is determined by the application of density values (see 9.3) to the calculated mass concentration of the detected peaks followed by normalization to 100 %.

IMPORTANT — It is essential to the correct execution of the method that great care be taken to ensure that all compounds are correctly identified. This is especially true for the identification of oxygen - containing compounds because of their wide range of response factors. It is, therefore, highly recommended for correct identification to verify possibly unknown oxygenates using a reference mixture that contains these pure compounds

4.4 After this analysis, the automotive motor gasoline is separated into hydrocarbon groups and then by carbon number. By the use of the corresponding relative response factors, the mass distributions of the groups in the automotive motor gasoline sample can be calculated.

5 Reagents and materials

5.1 Gases

Installation of suitable moisture filters is recommended for hydrogen, helium and nitrogen lines.

5.1.1 Hydrogen, 99,995 % pure.

DANGER — Hydrogen is explosive when mixed with air at concentration between 4 % (V/V) and 75 % (V/V). See the equipment manufacturers' manuals concerning leaks in the system.

5.1.2 Helium or nitrogen, 99,995 % pure.

The system's operating parameters such as column and trap temperatures, carrier gas flows and valve switching times are depending on the type of carrier gas used. The use of nitrogen as carrier gas is not possible on all configurations. Contact the equipment manufacturer for specific information or instructions on the use of nitrogen.

5.1.3 Compressed air.

5.2 Vials, airtight and inert, e.g. with rubber-membrane caps covered with self-sealing polytetra-fluoroethylene (PTFE).

5.3 Reference solutions, finished automotive motor gasoline(s) used as reference and which contain components and concentration levels comparable to those of the test sample.

The composition of the reference solution should have been determined in a round robin or by other methods.

DANGER — Flammable. Harmful if inhaled.

5.4 Diluting solvent, used in Procedure B, shall not interfere with any other component in gasoline being analysed. Dodecane ($C_{12}H_{26}$) or tridecane ($C_{13}H_{28}$) are recommended solvents.

6 Apparatus

6.1 Gas chromatograph, computer-controlled, multidimensional GC equipment, injector, FID, suitable columns, traps and hydrogenation catalysts, of which an example is given in Annex A.

6.2 Switching valves, suitable switching valves that are used for the transfer of compounds from one column to the other in the gas chromatograph.

They shall have a chemically inactive surface and a small dead volume.

6.3 Traps, suitable short columns (see Annex A for an example) used for retaining certain selected chemical groups of the automotive motor gasoline using temperature control.

The absorption of the trapped compounds shall be reversible.

(standards.iteh.ai)

EXAMPLE A typical sequence is the following:

— The alcohols and higher-boiling aromatics are absorbed in a trap (sulfate column I). The remaining aromatics are separated from the other components by means of a polar column (for example, OV 275).

79d540e06181/iso-22854-2016

— The ethers are separated from the remaining fraction by means of another trap (sulfate column II).

— The olefins are separated from the saturates by the olefin trap (for example, silver salt) in two steps. This is necessary due to the limited capacity of such traps to retain high amounts of butene or total olefins. If the trap capacity is sufficient for the olefin concentration, the separation may be performed in one step.

— The remaining saturated hydrocarbons are separated into paraffins and naphthenes according to their carbon number using a 13X molecular sieve column.

- The ethers are then eluted from the trap (sulfate column II) and separated and detected according to boiling point.

— The olefins are desorbed from the olefin trap and hydrogenated in the Pt-column. They are separated and detected as the corresponding saturated compounds using a 13X molecular sieve.

— The alcohols and higher-boiling aromatics are eluted from the polar column and the trap (sulfate column I), separated using a non-polar column (for example, OV 101 methyl silicone) and detected according to boiling point.

Examples of typical chromatograms with this order of elution of the hydrocarbon fractions are shown in Figures B.1 and B.2. Specifically for Procedure B, a typical chromatogram is shown in Figure B.6.

IMPORTANT — Sulfur-containing compounds are irreversibly adsorbed in the olefins trap and can reduce its capacity to retain olefins. Sulfur can also be adsorbed in the alcohol and etheralcohol-aromatic traps. Although the effect of low amounts of sulfur components on the various traps or columns is very small, it is important to exercise care with automotive motor gasoline samples with high levels of sulfur.

7 Sampling

Unless otherwise required by national fuel specification standards or by the regulations for the sampling of automotive motor gasoline, samples shall be taken in accordance with ISO 3170 for manual sampling or in accordance with ISO 3171 for automatic pipeline sampling.

8 Procedure

8.1 Conditioning

Condition the apparatus according to the manufacturer's instructions after shutdowns.

8.2 Sample preparation

8.2.1 Procedure B only – Sample dilution

The procedure as described in this subclause is used to analyse gasoline samples containing higher amounts of ethanol such as ethanol (E85) automotive fuel with ethanol content between 50 % (V/V) and 85 % (V/V).

As the sulfate column I trap (see Table A.1) cannot trap high amounts of ethanol, the sample shall be diluted. The selected dilutant (5.4) shall not interfere with the analysis. The level of dilution should be chosen in such a way that the final amount of ethanol does not exceed 20 % (V/V). If the ethanol content is unknown, it is advised to use a dilution ratio of 4.1 when analysing the sample.

8.2.2 Procedure A and B – Sample cooling ds.iteh.ai)

Cool the test sample to prevent loss by evaporation. Transfer a sufficient portion of the test sample to a vial (5.2) and immediately tightly close and seal it using the self-sealing PTFE cap (see 5.2). It is advised to cool the test sample to a temperature between 0.% and 5.% C.

8.3 Test sample injection volume

Size the injection volume of the test sample in such a way that the capacity of the columns is not exceeded and that the linearity of the detector is valid.

NOTE An injection volume of 0,1 µl has proven to be satisfactory.

8.4 Verification of the apparatus and test conditions

Run the reference solution (5.3) and check for correct instrument parameters, cutting times and grouping times. If they are not correct, adjust the apparatus to the manufacturer's recommendations and rerun the reference solution.

Attention should be paid to components, such as benzene, olefins and oxygenates, that are near the boundaries of separation on the group-selective columns. Care should be taken to accurately identify the oxygen-containing compounds. It is recommended to verify the identity of possible oxygenates using a reference material that contains the pure component of interest. Annex B shows several chromatograms specifically for oxygenate compounds, providing evidence of their elution times and possible interferences.

8.5 Validation

Reprocess the validation reference solution and compare the obtained results with the consensus values. The absolute deviation from the consensus values shall not be greater than the reproducibility for the parameters as given in Clause 11.