

SLOVENSKI STANDARD oSIST ISO/FDIS 17995:2019

01-oktober-2019

Kakovost vode - Ugotavljanje prisotnosti in števila termotolerantnih vrst Campylobacter

Water quality - Detection and enumeration of thermotolerant Campylobacter species

iTeh STANDARD PREVIEW

Qualité de l'eau - Recherche et dénombrement d'espèces thermotolérantes du genre Campylobacter

<u>SIST ISO 17995:2020</u>

Ta slovenski standard je istoveten z: ISO/FDIS 17995:2019

ICS:

07.100.20	Mikrobiologija vode	Microbiology of water
13.060.70	Preiskava bioloških lastnosti vode	Examination of biological properties of water

oSIST ISO/FDIS 17995:2019

en

oSIST ISO/FDIS 17995:2019

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 17995:2020</u> https://standards.iteh.ai/catalog/standards/sist/f79c7a5c-1b7e-42bc-84bc-1f2164e0929b/sist-iso-17995-2020 FINAL DRAFT

INTERNATIONAL STANDARD

ISO/FDIS 17995

ISO/TC 147/SC 4

Secretariat: DIN

Voting begins on: **2019-06-28**

Voting terminates on: 2019-08-23

Water quality — Detection and enumeration of thermotolerant *Campylobacter* spp

Qualité de l'eau — Recherche et dénombrement d'espèces thermotolérantes du genre Campylobacter

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 17995:2020 https://standards.iteh.ai/catalog/standards/sist/f79c7a5c-1b7e-42bc-84bc-1f2164e0929b/sist-iso-17995-2020

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STAN-DARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

Reference number ISO/FDIS 17995:2019(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 17995:2020

https://standards.iteh.ai/catalog/standards/sist/f79c7a5c-1b7e-42bc-84bc-1f2164e0929b/sist-iso-17995-2020

COPYRIGHT PROTECTED DOCUMENT

© ISO 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Fore	word		iv	
Intro	ductio	n	v	
1	Scop	e		
2	Norr	native references	1	
- 2	Torn	as and definitions	1	
3			1	
4	Prin 4 1	4.1 General		
	4.2	Inoculation and enrichment in selective liquid medium	2	
	4.3	Isolation and selection for confirmation	2	
	4.4	Confirmation	2	
5	Cult	ire media and reagents		
6	Арра	aratus	3	
7	Sam	pling, transport and storage	4	
8	Sam	Sample processing		
	8.1	General	4	
	8.2	Direct inoculation into enrichment broth		
	8.3	Membrane filtration	4	
9	Proc	edure CH STANDARD FREVIEW	5	
	9.1	Enrichment	5	
	9.2	Plating on solid, selective medium	6	
	9.3	Reading of presumptive results	6	
	9.4	Confirmation	6	
		9.4.1 General	6	
		9.4.2 Selection of colonies for confirmation		
		9.4.5 Absence of growth on non-selective agai plates		
		9.4.5 Detection of oxidase activity	7	
		946 Interpretation	7	
		9.4.7 Further verification		
	9.5	9.5 Identification of <i>Campylobacter</i> species (optional)		
		9.5.1 General	8	
		9.5.2 Detection of catalase	8	
		9.5.3 Detection of hippurate hydrolysis	8	
		9.5.4 Detection of indoxyl acetate hydrolysis	9	
		9.5.5 Interpretation	9	
10	Qual	ity assurance	9	
11	Expr	ession of results	9	
12	Test	report		
Anne	ex A (no	ormative) Flow diagram of the method		
Anne	ex B (no	ormative) Semi-quantitative analysis		
Anne	ex C (no	ormative) Composition and preparation of culture media and reagents		
Anne	ex D (n	ormative) Performance testing for the quality assurance of the culture media		
Anne	Annex E (informative) Performance characteristics			
Anne	ex F (in	formative) Additional information about campylobacters	25	
Bibli	ograpł	IY		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see <u>www.iso</u> .org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 147, *Water quality*, Subcommittee SC 4, *Microbiological methods*.

This second edition cancels and replaces the first edition (ISO 17995:2005), which has been technically revised. The main changes compared to the previous edition are as follows:

- the inclusion of direct inoculation of enrichment broths in addition to membrane filtration with additional information about sample processing.
- methods for the speciation of *Campylobacter*.
- performance testing for the quality assurance of culture media has been added to <u>Annex D</u>.
- performance characteristics of the method have been added as an <u>Annex E</u>.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

The thermotolerant *Campylobacter* species are not thought to propagate as free living but are zoonotic pathogenic bacteria of mammals and birds and which cause disease in humans. *Campylobacter jejuni* subsp. *jejuni* and *Campylobacter coli* are common causes of intestinal infections in humans. *Campylobacter upsaliensis* is found mainly in cats and dogs and is of minor importance for human infections. *Campylobacter lari* is less frequently associated with human infections. *Campylobacter lari* is less frequently associated with human infections. *Campylobacter infections* give rise to a flu-like illness with malaise, fever and myalgia followed by diarrhoea. The vehicles for *Campylobacter* infections are usually food, farm animals, pets and person-to-person contact; water is also important. They can be isolated from waters contaminated with human or animal faeces such as wastewater and surface waters. The bacteria have been demonstrated to survive within amoebae. Outbreaks of campylobacteriosis have been reported in relation to the use of contaminated drinking water and sporadic cases from recreational water use.

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 17995:2020 https://standards.iteh.ai/catalog/standards/sist/f79c7a5c-1b7e-42bc-84bc-1f2164e0929b/sist-iso-17995-2020 oSIST ISO/FDIS 17995:2019

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 17995:2020</u> https://standards.iteh.ai/catalog/standards/sist/f79c7a5c-1b7e-42bc-84bc-1f2164e0929b/sist-iso-17995-2020

FINAL DRAFT INTERNATIONAL STANDARD

Water quality — Detection and enumeration of thermotolerant Campylobacter spp

WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices.

IMPORTANT — It is absolutely essential that tests conducted in accordance with this document be carried out by suitably trained staff.

1 Scope

This document specifies a method for the detection, semi-quantitative and quantitative (MPN) enumeration of thermotolerant *Campylobacter* species.

The method can be applied to all kinds of waters including: drinking water, ground water and well water, fresh, brackish and saline surface water, swimming pools, spa and hydrotherapy pools, recreational waters, agricultural waters and runoff, untreated and treated wastewater and also sand and other sediments.

This method can be used for the detection of *Campylobacter* species in a specified sample volume. Clean water samples with low turbidity can be membrane filtered for either a qualitative method, semiquantitative or quantitative (MPN) method. Water samples with higher turbidity, such as primary and secondary wastewater effluents and sediments, are analysed using the same qualitative, semiquantitative or quantitative MPN method by direct inoculation of material into bottles or tubes. Sediments can be suspended in a suitable diluent or inoculated directly into enrichment broths.

Users wishing to employ this method are expected to verify its performance for the particular matrix under their own laboratory conditions.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 8199, Water quality — General requirements and guidance for microbiological examinations by culture

ISO 11133, Microbiology of food, animal feed and water — Preparation, production, storage and performance testing of culture media

ISO 19458, Water quality — Sampling for microbiological analysis

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org./obp</u>
- IEC Electropedia: available at <u>http://www.electropedia.org/</u>

3.1

Campylobacter

microorganisms forming characteristic colonies on solid selective media when incubated in a microaerobic atmosphere at 41,5 °C and which possess the characteristic morphology, motility, biochemical and growth properties described when tests are conducted in accordance with ISO 17995

Note 1 to entry: Thermotolerant *Campylobacter* species of relevance in human infections include *Campylobacter jejuni* subsp. *jejuni* (hereafter referred to as *Campylobacter jejuni*), *Campylobacter coli*, *Campylobacter lari* and possibly *Campylobacter upsaliensis*. *Campylobacter upsaliensis* is found mainly in cats and dogs and is of minor importance for human infection.

3.2

detection of Campylobacter

determination of the presence or absence, semi-quantitative enumeration or quantitative enumeration using a most probable number (MPN) system of *Campylobacter* in water and solid materials when the test is conducted in accordance with ISO 17995

4 Principle

4.1 General

In general, the detection of *Campylobacter* requires enrichment followed by isolation of colonies and their confirmation. <u>Annex A</u> for a flow diagram of the procedure shall be applied.

4.2 Inoculation and enrichment in selective liquid medium

Samples are inoculated either directly or after concentration using membrane filtration into one of two selective enrichment broths depending on the expected level of background microorganisms: Bolton broth for clean water and Preston broth for more heavily contaminated water. A single sample volume is processed for *Campylobacter* detection and, where necessary, at least three 10-fold volumes (for example 10 ml, 100 ml and 1 000 ml) are used for a semi-quantitative determination (Annex B shall be applied). For a quantitative (MPN) determination, volumes of 500 ml, 5×100 ml, 5×10 ml and, where counts may be high, smaller volumes are used or the initial sample is diluted. The broths are then incubated microaerobically at (37 ± 1) °C for up to (44 ± 4) h.

The ratio of sample to enrichment broth shall be 10 % or less if single strength broth is used.

4.3 Isolation and selection for confirmation

From the enrichment broth cultures in <u>4.2</u>, liquid selective media are inoculated onto modified charcoal cefoperazone deoxycholate agar (mCCDA).

The mCCDA plates are then incubated at $(41,5 \pm 1)$ °C for (44 ± 4) h in a microaerobic atmosphere and examined for characteristic colonies after incubation. Colonies with typical characteristics are presumed to be *Campylobacter* (see 9.3). It is necessary to confirm at least one colony from each plate to demonstrate that the corresponding enrichment culture is positive for the presence of *Campylobacter* species.

4.4 Confirmation

Confirmation of suspect colonies of *Campylobacter* species involves biochemical, morphological and physiological tests. See flow diagram in <u>Annex A</u>.

The colonies presumed to be *Campylobacter* are inoculated on the non-selective Columbia agar or other appropriate solid non-selective media, and are then confirmed by means of microscopic examination, failure to grow aerobically at 25 °C and appropriate biochemical tests. Optionally, *Campylobacter* species are further identified by specific biochemical tests.

For species identification, it is recommended that more than one isolate per enrichment culture is tested.

If typical *Campylobacter* species are confirmed or identified, the result is given as the qualitative, semi-quantitative or quantitative (MPN) estimate per volume of sample.

5 Culture media and reagents

For current laboratory practice see ISO 8199 and ISO 11133.

The composition and preparation of the culture media and reagents given in <u>Annex C</u> shall be used. The performance testing requirements given in <u>Annex D</u> shall be applied.

6 Apparatus

Usual microbiological laboratory equipment (as specified in ISO 8199) and, in particular, the following:

6.1 Water baths or incubators, capable of operating at (37 ± 1) °C and $(41,5 \pm 1)$ °C.

6.2 Water bath, capable of operating between 47 °C and 50 °C.

6.3 Membrane filtration equipment, as specified in ISO 8199.

6.4 Membrane filters, sterile membrane filters made of cellulose ester with a diameter of 45 mm to 50 mm and a pore size of 0,45 μm. Larger diameter membranes may be used with suitable filter holders provided they have a pore size of 0,45 μm.

6.5 pH-meter, accurate to within 0,2 pH units at 25 °C.

6.6 Apparatus suitable for achieving a microaerobic atmosphere, with oxygen content of (5 ± 2) %, carbon dioxide (10 ± 3) %, optional hydrogen at ≤ 10 %, with the balance being nitrogen.

Appropriate gastight containers of, for example, 3,5 l capacity are used to hold Petri dishes and/ or flasks or bottles for the enrichment broth, such as bacteriological anaerobic jars. The appropriate microaerobic atmosphere can be obtained using commercially available gas-generating kits, following precisely the manufacturer's instructions, particularly those relating to the volume of the jar and the capacity of the gas-generating kit. The jar may be flushed and filled with an appropriate gas mixture prior to incubation. Alternatively, an incubator with appropriately modified atmosphere (approximately 5 % oxygen and 10 % carbon dioxide) can also be used.

Gas-generating pouches can be used if they are able to maintain an atmosphere with approximately 5 % oxygen, and approximately 10 % carbon dioxide.

6.7 Microscope, preferably with phase contrast or differential interference contrast. Dark ground illumination can also be used.

6.8 Bottles, 100 ml to 250 ml, with screw caps for the selective enrichments.

6.9 Vented Petri dishes, sterile, 90 mm.

6.10 Disinfected forceps, for handling membrane filters.

6.11 Refrigerator, capable of operating at (5 ± 3) °C.

7 Sampling, transport and storage

It is important that the laboratory receive a sample which is truly representative and has not been damaged or changed during transport or storage. Be aware that campylobacters are very sensitive to adverse conditions. Keep samples cool (5 ± 3) °C and in the dark until they are processed. The temperature should not be above that at which the sample was taken, nor should the sample be allowed to freeze. Avoid unnecessary mixing with air. Process the samples as soon as possible after collection, but within a maximum of 30 h. In all other aspects of sampling, transport and storage, follow the instructions given in ISO 19458.

NOTE 1 Campylobacters survive well in clean water at (3 ± 2) °C. At higher temperatures or in other media, they can quickly deteriorate.

NOTE 2 It is important that sample bottles are filled to the rim. This avoids air spaces in the container and helps to ensure *Campylobacter* survival.

8 Sample processing

8.1 General

Depending on the sample properties and expected level of faecal contamination, use direct inoculation (see <u>8.2</u>) or membrane filtration (see <u>8.3</u>) for sample processing. Direct inoculation is suitable for samples with a high contamination level such as wastewater, whereas membrane filtration is suitable for surface water, groundwater and drinking water samples. Direct inoculation is only suitable for relatively small volumes, for example 100 ml or less and membrane filtration is suitable for larger volumes.

The ratio of 10 % (for example 100 ml/l) of sample to enrichment broth is used to avoid significant change to the composition of the culture medium. In addition, background microorganisms present in the sample are diluted sufficiently to avoid their inhibition of the growth of campylobacters during enrichment.

Throughout the processing steps, care should be taken to minimise the risk of cross-contamination of enrichment broths. The use of pipette tips with sterile filters is essential if automated pipettes are used. In addition any positive controls should be processed separately.

8.2 Direct inoculation into enrichment broth

Samples with expected high contamination levels are inoculated directly into Preston broth. Where the expected level of background microorganisms is low and samples cannot be processed by membrane filtration, Bolton broth may be used. If no information about the contamination level is available, both broths should be used.

Double strength broth should be used for large volumes. Single strength broth should be used for relatively small volumes of water where the ratio of sample to enrichment broth shall be 10 % or less. Generally, volumes of 100 ml, 50 ml and 10 ml are inoculated into equal volume of double strength broth. Volumes of 1 ml and 0,1 ml if required are inoculated into 10 ml of single strength broth.

Solid material can be weighed directly into single strength enrichment broths. Aliquots of 10 g can be weighed into 100 ml of enrichment broth, 1 g and smaller aliquots should be weighed into 10 ml of enrichment broth.

NOTE When high numbers of campylobacters are expected, the sample can also additionally be streaked directly onto mCCDA without prior selective enrichment.

8.3 Membrane filtration

Samples with expected low levels of contamination are filtered using membrane filters with a pore size of 0,45 μ m. Select one of the two enrichment broths depending on the expected level of background