TECHNICAL ISO/TR
REPORT 17987-5

First edition
2016-11-15

Road vehicles — Local Interconnect
Network (LIN) —

Part 5:
Application programmers interface
(API)

Véhicules routiers —Réseau Internet'local (LIN) —

Partieb; Interface.dupprogrammeur d’application (API)

_ Reference number
—/@\— ISO/TR 17987-5:2016(E)

ISO

S



ISO/TR 17987-5:2016(E)

COPYRIGHT PROTECTED DOCUMENT

© IS0 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

www.iso.org

ii © ISO 2016 - All rights reserved



Contents

ISO/TR 17987-5:2016(E)

Page
FFOT@WOTM ........ooccccceeeesse e85 5588585555555 iv
IIMETOUICEIONL. ..ot 8885 v
1 S0P ... 1
2 NOIIMATIVE FEERTEIICES .........cccooii et 1
3 Terms, definitions and abbreviated terMIS ... 1
3.1 Terms and definitions
3.2 Symbols ...
3.3 Abbreviated terms ..
4 APT A@FIMETIONS ...
4.1 LIN CIUSEET OIMETATION ...
4.2 Concept of operations
.20 GIETAL e
4.2.2 LIN COTE AP ..o
4.2.3  LIN node configuration and identification API.
4.2.4  LIN transportlayer AP ...
4.3 API cONVENTIONS....oooccioieiee e
4.3.1  General...n:
4.3.2  Data types ..
4.3.3  Driver and cluster Mana@emeNt . ...... ...
4.3.4 [Signallinteraction®... 2 A it b i i i Ve W e
4.3.5  Notification .. ..o
4.3.6  Schedule managerment!. Ll ya L AL
4.3.7 Interface management...............
4.3.8  User provided calllouts:7087-52016...
4.4  Nodegconfiguration-and identification
441 OVervIiew..58727006668/ 0t I08 T mbm ikl e iierresseeeseseeeseseseessseessees e eeese e eeess oo
4.4.2  NOAE CONFIGUIATION ..oocccooi oo
4.4.3 Identification
4.5 TEANSPOIE LAY e
.51 OVETVIBW oottt
4.5.2 Raw- and messaged-based API
4.5.3  Initialization.......cn,
A58 RAW AP
5.5 OVEIVIEW ..o
4.5.6  Messaged-based API..
4.6 EXAIMIPIES ...
0.1 OVEIVIRW ..o
4.6.2  Master node example
4.6.3  SIaVe NOAE EXAMPIE ...oooooeee et
BIDIIOGIAPIY ... 34

© 1S0 2016 - All rights reserved iii



ISO/TR 17987-5:2016(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s:adherence to,the World Tradel Organization (W TO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

The committee responsible for this document is ISO/TC 22, Road vehicles, Subcommittee SC 31, Data
communication.

Alist of all parts in the ISO'M7987séeries/can befoundonthe ISOwebsite:

iv © ISO 2016 - All rights reserved



ISO/TR 17987-5:2016(E)

Introduction

ISO 17987 (all parts) specifies the use cases, the communication protocol and physical layer
requirements of an in-vehicle communication network called Local Interconnect Network (LIN).

The LIN protocol as proposed is an automotive focused low speed Universal Asynchronous Receiver
Transmitter (UART) based network. Some of the key characteristics of the LIN protocol are signal-
based communication, schedule table-based frame transfer, master/slave communication with error
detection, node configuration and diagnostic service communication.

The LIN protocol is for low cost automotive control applications, for example, door module and air
condition systems. It serves as a communication infrastructure for low-speed control applications in
vehicles by providing:

— signal-based communication to exchange information between applications in different nodes;
— Dbitrate support from 1 kbit/s to 20 kbit/s;

— deterministic schedule table-based frame communication;

— network management that wakes up and puts the LIN cluster into sleep mode in a controlled manner;
— status management that provides error handling and error signalling;

— transport layer that allows large amount of data to be transmitted (such as diagnostic services);
— specification of how to’handle diagnostic services;

— electrical physical layer specifications;

— node description language describing properties of slave nodes;

— network description file describingbehaviour of communication;

— application programmer’s interface;

ISO 17987 (all parts) is based on the open systems interconnection (OSI) Basic Reference Model as
specified in ISO/IEC 7498-1 which structures communication systems into seven layers.

The OSI model structures data communication into seven layers called (top down) application layer
(layer 7), presentation layer, session layer, transport layer, network layer, data link layer and physical layer
(layer 1). A subset of these layers is used in ISO 17987 (all parts).

ISO 17987 (all parts) distinguishes between the services provided by a layer to the layer above it and
the protocol used by the layer to send a message between the peer entities of that layer. The reason for
this distinction is to make the services, especially the application layer services and the transport layer
services, reusable also for other types of networks than LIN. In this way, the protocol is hidden from the
service user and it is possible to change the protocol if special system requirements demand it.

ISO 17987 (all parts) provides all documents and references required to support the implementation of
the requirements related to.

— IS0 17987-1: This part provides an overview of the ISO 17987 (all parts) and structure along with
the use case definitions and a common set of resources (definitions, references) for use by all
subsequent parts.

— IS0 17987-2: This part specifies the requirements related to the transport protocol and the network
layer requirements to transport the PDU of a message between LIN nodes.

— IS0 17987-3: This part specifies the requirements for implementations of the LIN protocol on the
logical level of abstraction. Hardware-related properties are hidden in the defined constraints.

© ISO 2016 - All rights reserved v



ISO/TR 17987-5:2016(E)

ISO 17987-4: This part specifies the requirements for implementations of active hardware
components which are necessary to interconnect the protocol implementation.

ISO/TR 17987-5: This part specifies the LIN application programmers interface (API) and the
node configuration and identification services. The node configuration and identification services
are specified in the API and define how a slave node is configured and how a slave node uses the
identification service.

ISO 17987-6: This part specifies tests to check the conformance of the LIN protocol implementation
according to ISO 17987-2 and ISO 17987-3. This comprises tests for the data link layer, the network
layer and the transport layer.

[SO 17987-7: This part specifies tests to check the conformance of the LIN electrical physical layer
implementation (logical level of abstraction) according to ISO 17987-4.

The LIN API is a network software layer that hides the details of a LIN network configuration (e.g. how
signals are mapped into certain frames) for a user making an application program for an arbitrary
ECU. The user is provided an API, which is focused on the signals transported on the LIN network. A
tool takes care of the step from network configuration to program code. This provides the user with
configuration flexibility. The LIN API is only one possible API existing today beside others like defined
for LIN master nodes in the AUTOSAR standard. Therefore, the LIN API is published as a Technical
Report and all definitions given here are informative only.

Vi

© ISO 2016 - All rights reserved



TECHNICAL REPORT ISO/TR 17987-5:2016(E)

Road vehicles — Local Interconnect Network (LIN) —

Part 5:
Application programmers interface (API)

1 Scope

This document has been established in order to define the LIN application programmers interface (API).

2 Normative references

There are no normative references in this document.

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions
For the purposes of this document, the texms and definitions given in1S0117987-2 and I1SO 17987-3 apply.
ISO and [EC maintain terminologicdl-databasessfor usedmnstandardization at the following addresses:

— IEC Electropedia: available at http://www.electropedia.org/

— ISO Online browsing: platformtavailable:athttp://Wwiww.iSelor

3.2 Symbols

[l logical OR binary operation

3.3 Abbreviated terms

API application programmers interface
ms millisecond
0SI open systems interconnection

PDU protocol data unit
RX Rx pin of the transceiver

UART  universal asynchronous receiver transmitter

4 API definitions

4.1 LIN cluster generation

The LIN Description file (LDF; see ISO 17987-2) is parsed by a tool and generates a configuration for
the LIN device driver. The node capability language specification (NCF) is normally not used in this

© IS0 2016 - All rights reserved 1



ISO/TR 17987-5:2016(E)

process since its intention is to describe a hardware slave node, and therefore, does not need the APIL.
See ISO 17987-2 for a description of the workflow and the roles of the LDF and NCF.

4.2 Concept of operations

4.2.1 General

The APl is split in three areas

— LIN core API,

— LIN node configuration and identification AP, and

— LIN transport layer API (optional).

4.2.2 LIN core API

The LIN core API handles initialization, processing and a signal based interaction between the
application and the LIN core. This implies that the application does not have to bother with frames and
transmission of frames. Notification exists to detect transfer of a specific frame if this is necessary, see
4.3.5. API calls to control the LIN core also exist.

Two versions exist of most of the API calls
— static calls embed the name of the signal or interface in the name of the call,,and
— dynamic calls provide the signal or interface as a parameter.

NOTE The named objects (signals, schedules) defined in the LDF extends their names with the channel
postfix name (see channel postfix name definition in 1SQ, 17987-2),

4.2.3 LIN node configuration and identification API

The LIN node configuration and identification API is service-based (request/response), i.e. the
application in the master node calls an API routine that transmits a request to the specified slave node
and awaits a response. The slave node device driver automatically handles the service.

The behaviour of the LIN node configuration and identification API is covered in the node configuration
and identification (see ISO 17987-3).

4.2.4 LIN transport layer API

The LIN transport layer is message based. Its intended use is to work as a transport layer for messages
to a diagnostic message parser outside of the LIN device driver. Two exclusively alternative APIs exist,
one raw that allows the application to control the contents of every frame sent and one messaged-based
that performs the full transport layer function.

The behaviour of the LIN transport layer API is defined in ISO 17987-2.

2 © IS0 2016 - All rights reserved



4.3 API conventions

4.3.1 General

ISO/TR 17987-5:2016(E)

The LIN core API has a set of functions all based on the idea to give the API a separate name space, in
order to minimize the risk of conflicts with existing software. All functions and types have the prefix
“1_” (lowercase “L” followed by an “underscore”).

Table 1 — API functions overview

Function

| Description

DRIVER AND CLUSTER MANAGEMENT

1_sys_init

|Performs the initialization of the LIN core.

SIGNAL INTERACTION

scalar signal read

Reads and returns the current value of the signal.

scalar signal write

Reads and returns the current value of the signal.

byte array read

Reads and returns the current values of the selected bytes in the signal.

byte array write

Sets the current value of the selected bytes in the signal specified by the name sss
to the value specified.

Tl QT A NDRHRHN oy 7w
1_flg_tst Returnsa Cboolean indicating the current state of the flag specified by the name of
the static ARLcall,i.e.sieturnszéro if the flag is cleared, non-zero otherwise.
1_flg_clr Sets the current value of the flag specified by the name of the static API call to zero.
SCHEDULE MANAGEMENT
1_sch_tick Funection‘providesiatimebasefor'scheduling
1_sch_set Sets up’the next’schedule.
INTERFACE MANAGEMENT
I_ifc_init Initializes the controller specified by the name, i.e. sets up internal functions such

as the baud rate.

1_ifc_goto_sleep

This call requests slave nodes on the cluster connected to the interface to enter bus
sleep mode by issuing one go to sleep command.

1_ifc_wake_up

The function transmits one wake up signal.

1_ifc_ioctl This function controls functionality that is not covered by the other API calls.

l_ifc_rx The application program is responsible for binding the interrupt and for setting the
correct interface handle (if interrupt is used).

l_ifc_tx The application program is responsible for binding the interrupt and for setting the
correct interface handle (if interrupt is used).

1_ifc_aux This function is used in a slave nodes to synchronize to the break field/sync byte

field sequence transmitted by the master node.

1_ifc_read_status

This function returns the status of the previous communication.

© ISO 2016 - All rights reserved



ISO/TR 17987-5:2016(E)

Table 1 (continued)

Function

Description

USER PROVIDED CALL-OUTS

1_sys_irq_disable

The user implementation of this function achieves a state in which no interrupts
from the LIN communication occurs.

1_sys_irq_restore

The user implementation of this function recovers the previous configured inter-
rupt level.

NODE CONFIGURATION

1d_is_ready

This call returns the status of the last requested configuration service.

1d_check_response

This call returns the result of the last node configuration service.

ld_assign_frame_id_range

This call assigns the protected identifier of up to four frames in the slave node with
the configured NAD.

1d_assign_NAD

This call assigns the configured NAD (node diagnostic address) of all slave nodes
that matches the initial_NAD, the supplier ID and the function ID.

1d_save_configuration

This call makes a save configuration request to a specific slave node with the given
configured NAD or to all slave nodes if broadcast NAD is set.

ld_read_configuration

This call serializes the current configuration (configured NAD and PIDs) and copy
it to the area (data pointer) provided by the application.

1d_set_configuration

The function configures the configured NAD and the PIDs according to the config-
uration provided.

... . .. IDENTIFICATION _

A mY mh dba &a mh & s

ld_read_by_id

The call requests/the slave'node selected with the ‘configured NAD to return the
property associated with the id parameter.

ld_read_by_id_callout

This callout is used when the master node transmits a read by identifier request
with an identifier in the user defined area.

ﬁh%i!ﬁ?ﬁé—r‘aZUlb
Tttnce/lotand 4;+L.!N+ dee R e e Yl AN,

AD S 2.0

1d_init |This call reinitializes the raw or messaged-based layer on the interface.
RAW API
ld_put_raw The call queues the transmission of 8 bytes of data in one frame. The data is sent in
the next suitable MasterReq frame.
ld_get_raw The call copies the oldest received diagnostic frame data to the memory specified

by data.

Id_raw_tx_status

The call returns the status of the raw frame transmission function.

Id_raw_rx_status

The call returns the status of the raw frame receive function.

MESSAGE-BASED API

ld_send_message

The call packs the information specified by data and DataLength into one or multiple
diagnostic frames.

ld_receive_message

The call prepares the LIN diagnostic module to receive one message and store it in
the buffer pointed to by data.

Id_tx_status

The call returns the status of the last made call to 1d_send_message.

Id_rx_status

The call returns the status of the last made call to ld_receive_message.

© ISO 2016 - All rights reserved



ISO/TR 17987-5:2016(E)

4.3.2 Data types

The LIN core defines the following types:

— 1_bool 0 is false, and non-zero (>0) is true;

— lioctl_op implementation dependent;

— l_irgmask implementation dependent;

— 1_u8 unsigned 8 bit integer;

— l.ulé6 unsigned 16 bit integer;

— l_signal_handle has character string type “signal name”.

In order to gain efficiency, the majority of the functions are static functions (no parameters are needed,
since one function exist per signal, per interface, etc.).

4.3.3 Driver and cluster management

4.3.3.1 l_sys_init

Table 2 defines the 1_sy5[init:

Table2 == sys| init

Prototype 1_bool I_sys_init (void)
Applicability Masterjand slave nodes;
Description 1_sys_init performs theinitialization/of the/LIN core. The scope of the initialization is the

physical node i.e. the complete node (see node composition definition in ISO 17987-2).

The call to the 1_sys_init is the first call a user uses in the LIN core before using any other
API functions.

Return value Zero if the initialization succeeded.

Non-zero if the initialization failed.

4.3.4 Signal interaction

4.3.4.1 General

In all signal API calls below the sss is the name of the signal, e.g.1_u8_rd_enginespeed ().

4.3.4.2 Signal types

The signals are of three different types:

— l_bool for one bit signals; zero if false, non-zero otherwise;
— 1_u8 for signals of the size 2 bits to 8 bits;

— 1_u16 for signals of the size 9 bits to 16 bits.

© IS0 2016 - All rights reserved 5



ISO/TR 17987-5:2016(E)

4.3.4.3 Scalar signal read

Table 3 defines the scalar signal read.

Table 3 — Scalar signal read

Dynamic prototype

1_bool l_bool_rd (1_signal_handle sss);
1_u81_u8_rd (l_signal_handle sss);
1.u161_ul6_rd (1_signal_handle sss);

Static prototype 1_bool 1_bool_rd_sss (void);
1_u81_u8_rd_sss (void);
1_ul61_ul6_rd_sss (void);
Applicability Master and slave nodes.
Description Reads and returns the current value of the signal.
Reference See ISO 17987-3:2016, 5.1.2.

4.3.4.4 Scalar signal write

Table 4 defines the scalar signal write.

Table 4 — Scalar signal write

Dynamic prototype

void I_bool_wr (l_signal_handle sss, |_bool v);
void 1_u8_wr (l_signal_handlesss, 1 - u8v);

void ["ule wi'(1'signal “handle’sss) 12 ut6 v);

Static prototype void I_bool_wr_sss (I_bool v);
void 1_u8_wr_sss (1_u8 v);
void I_ul6_wr_sss (1_ul6 v);
Applicability Master and slave nodes.
Description Sets the current value of the signal to v.
Reference See IS0 17987-3:2016, 5.1.2.
6 © IS0 2016 - All rights reserved



ISO/TR 17987-5:2016(E)

4.3.4.5 Byte array read

Table 5 defines the byte array read.

Table 5 — Byte array read

Dynamic prototype

void |_bytes_rd (I_signal_handle sss,
1_u8 start, /* first byte to read from */
1_u8 count, /* number of bytes to read */

1_uB8* constdata); /* where data is written */

Static prototype

void I_bytes_rd_sss (1_u8 start,
1_u8 count,

1_u8* const data);

Applicability

Master and slave nodes.

Description

Reads and returns the current values of the selected bytes in the signal. The sum of start
and count are never greater than the length of the byte array.

Example

Assume thata byte array is 6 bytes long, numbered 0 to 5. Reading byte 2 and 3 from this
array indicates the parameter value start to be 2 (skipping byte 0 and 1) and count to be
2 (reading byte 2 and 3). In this case byte 2 is written to data [0] and byte 3 is written
todata 1]

Reference

See IS0 17987-3:2016, 5.1.2.

4.3.4.6 Byte array write

Table 6 defines the byte array write,

Table 6 — Byte array write

Dynamic prototype

void |_bytes_wr (I_signal_handle sss,
1_u8 start, /* first byte to write to */
1_u8 count, /* number of bytes to write */

const1_u8* const data); /* where data is read from */

Static prototype

void 1_bytes_wr_sss (1_u8 start,
]_u8 count,

const1_u8* const data);

Applicability

Master and slave nodes.

Description

Sets the current value of the selected bytes in the signal specified by the name sss to the
value specified.

The sum of start and count are never greater than the length of the byte array, although
the device driver does not choose to enforce this in runtime.

Example

Assume that a byte array is 7 bytes long, numbered 0 to 6. Writing byte 3 and 4 from this
array indicates the parameter value start to be 3 (skipping byte 0, 1 and 2) and count to
be 2 (writing byte 3 and 4). In this case byte 3 is read from data [0] and byte 4 is read
from data [1].

Reference

See ISO 17987-3:2016, 5.1.2.

4.3.5 Notification

Flags are local objects in a node and they are used to synchronize the application program with the LIN
core. The flags are automatically set by the LIN core and can only be tested or cleared by the application

© IS0 2016 - All rights reserved 7



	˘ÿ‘�
ÿ²³¬�¶=�‰#�«ZC‘™ł�«y¿,¼×�.ªžjS⁄Èy,-Be��Ää·ºÑ−í��D&˛�#
'Á½�×°`Içl	Òáu«ž���rÿq‰"˘

