

Designation: B 265 - 09 Designation: B 265 - 09a

Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate¹

This standard is issued under the fixed designation B 265; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

- 1.1 This specification² covers annealed titanium and titanium alloy strip, sheet, and plate as follows:
- 1.1.1 Grade 1—Unalloyed titanium,
- 1.1.2 Grade 2—Unalloyed titanium,
- 1.1.2.1 Grade 2H—Unalloyed titanium (Grade 2 with 58 ksi minimum UTS),
- 1.1.3 Grade 3—Unalloyed titanium,
- 1.1.4 Grade 4—Unalloyed titanium,
- 1.1.5 Grade 5—Titanium alloy (6 % aluminum, 4 % vanadium),
- 1.1.6 Grade 6—Titanium alloy (5 % aluminum, 2.5 % tin),
- 1.1.7 Grade 7—Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.7.1 Grade 7H—Unalloyed titanium plus 0.12 to 0.25 % palladium (Grade 7 with 58 ksi minimum UTS),
- 1.1.8 Grade 9—Titanium alloy (3.0 % aluminum, 2.5 % vanadium),
- 1.1.9 Grade 11—Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.10 Grade 12—Titanium alloy (0.3 % molybdenum, 0.8 % nickel),
- 1.1.11 Grade 13—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.12 Grade 14—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.13 Grade 15—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.14 Grade 16—Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.14.1 Grade 16H—Unalloyed titanium plus 0.04 to 0.08 % palladium (Grade 16 with 58 ksi minimum UTS),
- 1.1.15 Grade 17—Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.16 Grade 18—Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.04 to 0.08 % palladium,
- 1.1.17 Grade 19—Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum),
- 1.1.18 *Grade 20*—Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum) plus 0.04 % to 0.08 % palladium,
 - 1.1.19 Grade 21—Titanium alloy (15 % molybdenum, 3 % aluminum, 2.7 % niobium, 0.25 % silicon),
 - 1.1.20 Grade 23—Titanium alloy (6 % aluminum, 4 % vanadium with extra low interstitial elements, ELI),
 - 1.1.21 Grade 24—Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.04 % to 0.08 % palladium,
 - 1.1.22 Grade 25—Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.3 % to 0.8 % nickel and 0.04 % to 0.08 % palladium,
 - 1.1.23 Grade 26—Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
 - 1.1.23.1 Grade 26H—Unalloyed titanium plus 0.08 to 0.14 % ruthenium (Grade 26 with 58 ksi minimum UTS),
 - 1.1.24 Grade 27—Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
 - 1.1.25 Grade 28—Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.08 to 0.14 % ruthenium,
- 1.1.26 *Grade* 29—Titanium alloy (6 % aluminum, 4 % vanadium with extra low interstitial elements, ELI) plus 0.08 to 0.14 % ruthenium,
 - 1.1.27 Grade 30—Titanium alloy (0.3 % cobalt, 0.05 % palladium),
 - 1.1.28 Grade 31—Titanium alloy (0.3 % cobalt, 0.05 % palladium),
 - 1.1.29 Grade 32—Titanium alloy (5 % aluminum, 1 % tin, 1 % zirconium, 1 % vanadium, 0.8 % molybdenum),
 - 1.1.30 Grade 33—Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.02 5 % ruthenium, 0.15 % chromium),
 - 1.1.31 Grade 34—Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium),

¹ This specification is under the jurisdiction of ASTM Committee B10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.01 on Titanium.

Current edition approved April 15; May 1, 2009. Published MayJune 2009. Originally approved in 1952. Last previous edition approved in 2008 2009 as B265-08b.

² For ASME Boiler and Pressure Vessel Code applications see related Specifications SB-265 in Section II of that Code.

- 1.1.32 Grade 35—Titanium alloy (4.5 % aluminum, 2 % molybdenum, 1.6 % vanadium, 0.5 % iron, 0.3 % silicon),
- 1.1.33 Grade 36—Titanium alloy (45 % niobium),
- 1.1.34 Grade 37—Titanium alloy (1.5 % aluminum), and
- 1.1.35 Grade 38—Titanium alloy (4 % aluminum, 2.5 % vanadium, 1.5 % iron).

Note 1—H grade material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grades 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.

The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports, where over 99 % met the 58 ksi minimum UTS.

1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

2. Referenced Documents

- 2.1 ASTM Standards:³
- E 8 Test Methods for Tension Testing of Metallic Materials
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 290 Test Methods for Bend Testing of Material for Ductility
- E 539 Test Method for X-Ray Fluorescence Spectrometric Analysis of 6Al-4V Titanium Alloy
- E 1409 Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Technique
- E 1447 Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method
- E 1941 Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys
- E 2371 Test Method for Analysis of Titanium and Titanium Alloys by Atomic Emission Plasma Spectrometry
- E 2626 Guide for Spectrometric Analysis of Reactive and Refractory Metals

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 Any product 0.187 in. (4.75 mm) and under in thickness and less than 24 in. (610 mm) in width is classified as strip; products 0.187 in. (4.75 mm) and under in thickness and 24 in. (610 mm) or more in width are classified as sheet; any product over 0.187 in. (4.75 mm) in thickness and over 10 in. (254 mm) in width is classified as plate.

4. Ordering Information

- 4.1 Orders for materials under this specification shall include the following information as applicable:
- 4.1.1 Grade number (Section 1),
- 4.1.2 Product limitations (Section 3),
- 4.1.3 Special mechanical properties (Table 1),
- 4.1.4 Marking (Section 16),
- 4.1.5 Finish (Section 8),
- 4.1.6 Packaging (Section 16),
- 4.1.7 Additional required reports (Section 15), and
- 4.1.8 Disposition of rejected material (Section 14).

5. Chemical Composition

- 5.1 The grades of titanium and titanium alloy metal covered by this specification shall conform to the chemical composition requirements prescribed in Table 2.
- 5.1.1 The elements listed in Table 2 are intentional alloy additions or elements which are inherent to the manufacture of titanium sponge, ingot or mill product.
- 5.1.1.1 Elements other than those listed in Table 2 are deemed to be capable of occurring in the grades listed in Table 2 by and only by way of unregulated or unanalyzed scrap additions to the ingot melt. Therefore, product analysis for elements not listed in Table 2 shall not be required unless specified and shall be considered to be in excess of the intent of this specification.
 - 5.1.2 Elements intentionally added to the melt must be identified, analyzed, and reported in the chemical analysis.
- 5.2 When agreed upon by producer and purchaser and requested by the purchaser in his written purchase order, chemical analysis shall be completed for specific residual elements not listed in this specification.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

TABLE 1 Tensile Requirements^A

	Tensile St	rength, min		Yield Strengt	h, 0.2 % Offset	— Elongation in	Bend Test (Radius of Mandrel) ^B			
Grade	ksi	MPa	r	nin	m	nax	2 in. or 50 mm,	Under 0.070 in. (1.8 mm) in	0.070 to 0.187 in. (1.8–4.75 mm) in	
	NOI	IVII G	ksi	MPa	ksi	MPa	min, %	Thickness	Thickness	
1	35	240	20	138	45	310	24	1.5 <i>T</i>	2 <i>T</i>	
2	50	345	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>	
2H ^{<i>C,D</i>}	58	400	40	275	65	450	20	2 <i>T</i>	2 <i>T</i>	
3	65	450	55	380	80	550	18	2 <i>T</i>	2.5 <i>T</i>	
4	80	550	70	483	95	655	15	2.5 <i>T</i>	3 <i>T</i>	
5	130	895	120	828			10 ^E	4.5 <i>T</i>	5 <i>T</i>	
6	120	828	115	793			10 ^E	4 <i>T</i>	4.5 <i>T</i>	
7	50	345	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>	
7H ^{C,D}	58	400	40	275	65	450	20	2 <i>T</i>	2 <i>T</i>	
9	90	620	70	483			15 ^{<i>F</i>}	2.5 <i>T</i>	3 <i>T</i>	
11	35	240	20	138	45	310	24	1.5 <i>T</i>	2 <i>T</i>	
12	70	483	50	345			18	2 <i>T</i>	2.5 <i>T</i>	
13	40	275	25	170			24	1.5 <i>T</i>	2 <i>T</i>	
14	60	410	40	275			20	2 <i>T</i>	2.5 <i>T</i>	
15	70	483	55	380			18	2 <i>T</i>	2.5 <i>T</i>	
16	50	345	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>	
16H ^{C,D}	58	400	40	275	65	450	20	2 <i>T</i>	2 <i>T</i>	
17	35	240	20	138	45	310	24	1.5 <i>T</i>	2 <i>T</i>	
18	90	620	70	483			15 ^{<i>F</i>}	2.5 <i>T</i>	3 <i>T</i>	
19 ^{<i>G,H</i>}	115	793	110	759			15	3 <i>T</i>	3 <i>T</i>	
20 ^{<i>G,H</i>}	115	793	110	759			15	3 <i>T</i>	3 <i>T</i>	
21 ^{<i>G,H</i>}	115	793	110	759			15	3 <i>T</i>	3 <i>T</i>	
23 ^{G,H}	120	828	110	759			10	4.5 <i>T</i>	5 <i>T</i>	
24	130	895	120	828			10	4.5 <i>T</i>	5 <i>T</i>	
25	130	895	120	828			10	4.5 <i>T</i>	5 <i>T</i>	
26	50	345	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>	
26H ^{C,D}	58	400	40	275	65	450	20	2 <i>T</i>	4 <i>T</i>	
27	35	240	20	138	45	310	24	1.5 <i>T</i>	2 <i>T</i>	
28	90	620	70	483			15	2.5 <i>T</i>	3 <i>T</i>	
29	120	828	110	759	1	• 1	10	4.5 <i>T</i>	5 <i>T</i>	
30	50	345	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>	
31	65	450	55	380	80	550	18	2 <i>T</i>	2.5 <i>T</i>	
32	100	689	85	586			10 [€]	3.5 <i>T</i>	4.5 <i>T</i>	
33	50	345	40	275	65	450	20	2 <i>T</i>	2.5 <i>T</i>	
34	65	450	55	380	80	550	18	2 <i>T</i>	2.5 <i>T</i>	
35	130	895	120	828			5	8 <i>T</i>	8 <i>T</i>	
36	65	450	60	410	95	655	10	4.5 <i>T</i>	5 <i>T</i>	
37	50	345	31	215	65	450	20	2 <i>T</i>	2.5 <i>T</i>	
38	130	895	115	794	<u>B265-09a</u>		10	4 <i>T</i>	4.5 <i>T</i>	

A Minimum and maximum limits apply to tests taken both longitudinal and transverse to the direction of rolling. Mechanical properties for conditions other than annealed or plate thickness over 1 in. (25 mm) may be established by agreement between the manufacturer and the purchaser.

^B Bend to **Radius** of Mandrel, *T* equals the thickness of the bend test specimen. Bend tests are not applicable to material over 0.187 in. (4.75 mm) in thickness.

- 5.3 Product Analysis Product analysis tolerances do not broaden the specified heat analysis requirements but cover variations between laboratories in the measurement of chemical content. The manufacturer shall not ship material that is outside the limits specified in Table 2 for the applicable grade. Product analysis limits shall be as specified in Table 3.
- 5.4 At least two samples for chemical analysis shall be tested to determine chemical composition. Samples shall be taken from the ingot or the extremes of the product to be analyzed.

6. Mechanical Properties

- 6.1 Material supplied under this specification shall conform to the mechanical property requirements given in Table 1 for the grade specified.
- 6.2 Tension testing specimens are to be machined and tested in accordance with Test Methods E 8. Tensile properties shall be determined using a strain rate of 0.003 to 0.007 in./in./min through the specified yield strength, and then increasing the rate so as to produce failure in approximately one additional minute.
- 6.3 For sheet and strip, the bend test specimen shall withstand being bent cold through an angle of 105° without fracture in the outside of the bent portion. The bend shall be made on a radius equal to that shown in Table 1 for the applicable grade. The bends

C Material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grade 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.

^D The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports, where over 99 % met the 58 ksi minimum UTS.

For Grades 5, 6 and 32 the elongation on materials under 0.025 in. (0.635 mm) in thickness may be obtained only by negotiation.

F Elongation for continuous rolled and annealed (strip product from coil) for Grade 9 and Grade 18 shall be 12 % minimum in the longitudinal direction and 8 % minimum in the transverse direction.

^G Properties for material in the solution treated condition.

H Material is normally purchased in the solution treated condition. Therefore, properties for aged material shall be negotiated between manufacturer and purchaser.

													0.	- 0.4 - 0.4					
			ı	I									0	l ói					
	9	4	Grade ++					0.015	0.015				٠.	0.1	: :			40.0	96.0
		Grade 13	Cobalt					0.015	:1				;	:	: :	l		0.04	0.4- 0.06 0.06
		Grade 7H Grade 9 Grade 11 Grade 12 Grade 13	Nickel Molybdenum Chromium					0.015	:1				;	:	: :1	l		Į:	l:
rementsA		Grade 11	olybdenum					0.015	rid		0:30		:	;	: :1	l		Į:	l:
al Requir	Composition, %	Grade 9	Nickel Mc	(1			0.08	0.015	lar		087.0 087.0		21-5:2	3:5	9:6	l		:	0.1
TABLE 2 Chemical RequirementsA	Сошро	Grade 7H	Suthenium			0.03		0.015	:I		% :- :-		:	;	: :	l	:	: :	:1
TABLE	ttps://stand	Grade 7	ds.ida	ai/cat		60.0	ds/sis	Ve39700	2 <u>65-0</u> 61+04		1841:h30	0.4	8b116l	12844	16f/a	stm-l	:26	5-0	9a1
		Grade 6	'anadium E			9 80.0	0.08	0.015	:1		0.25 0.20	0.1	4.0		: :	l	:	:	:1
		Grade 5	Aluminum Vanadium Palladium Ruthenium			9 60.0	0.08	0.015	:1		0.30 0.20	:1	0.45 0.45 5.5-	6.75	5:4 :1	I	: ;	0.50	:1
		Grade 4	range or max.	0.05 total	Other Elements, max. total	6:03	0.08	0.015	:1		0.30 0.30 0.40	:1	0.10		_		: ;	0.015	:1
		Grade 3	Nitrogen, Hydrogen, max. max.	0.05	Other Elements, max. each	6.03	0.08	0.015	0.20	0.4	0.015 0.35	:1	0.25	:	0.015	::	ļ:	: :	:1
	9		- 11	0.03	Silicon	6.03	0.08	0.08 0.08 0.015	0.30	0.1	0.03	:1	9. 49 86 89 ::	:	0.05	# 11		0.05	:1
		G rade 2	Oxygen range or max.	0.03	틸	6.03	0.08	0.08 0.08 0.015	0.015	:1	0.25 0.25	:1	0.15	;	0.35	: ; ;	9:6	0.40	:1
	9	#	Carbon, max.	ก,กนิลผิ3	NZircon Nim bium	9.05	÷ 0.08	max 0.08 1 Hydrogen@015	0.03	:1	0.08 0.18	:	0.25 0.25 m	0.30	0.08	#1	:	0.08 ium :::	un
	El Wemight Percent ^{A,B,C,C,E}		Grade	Nitrogen, mag	NZircon		Carbon, 0.08	max 0.08 1 Hydroge	0.18 Fort	Iron,	9.30 0.30 0.xygen,	Oxygen,	9.25 0.25 2H 0.25 Aluminum	0.015 0.30	3	ı⊈¦	l: ·	4 0.08 Euthenium	Ruthenium
	Per							4											

0.030.03

	⊕ B 265 – 09a																0.05						
																						(80:0
																						(0.08
																							∞
																	9.4	4 .0					0.08
																						(0.08
		Į:	l:									II. II.					0.1	0.1 balance				1	∞
		li.	:1			: :		E :				: :					0.4	balance				Ċ	0.08
		l:	:1		c	0.4						: :	H []				0.4	balance			Grade 26H	L (0.05
		0.12- 0.25	:1			l: I:		H :					tal			S 6.	0.4	balance	sition, %		Grade 26		0.05
on, %		Į:	:1			:1 6	h	<u>t</u> t					1 <u>.</u> d		dsi	teh	1.2	balance 0.4-0.6	Composition,			•	ΣI
Composition, %		۲۰ ۳۵																			Grade 25		0.05
O		0.12 0.25			: :			;; ;;		4.0	4.9	:	⊫:1 <u>1 B2</u>		: 9 <u>a</u>	11	0.4	 balance 0.04-0.06		Grade0.4	Grade 24		
		0.42	tah		s.iteh		ata	0.12-0.25		0.4-	s/\$is	st/æ319	7 ae 6		467-45)1	-a30aF	891149	28c4: sou a:	m-				90.0
		ŀ	3.5-4.5		4.0-6.0	:1 ;	l			-9·0 6:0	11	# 11	2.0-3.0		: : [0]	:1	6.0	0.2-0.4 balance		Grade0.17	Grade 230.015		80:0
		Į:	5.5-6.75		0.50	ii ;	l	# :T		÷	0.30	# []	2.5-3.5		0.20	:1	9.0	0.6-0.9 balance		Grade 16H	Grade 240.03		
		ŀ	0.40	9.4	0.015	:1 :	l	0:30	0.4	:	0.015	# []	0.25	9.4	0.015	:1	9.0	balance			ው ሺ	6	80:0
		Į:	0.015	:15	: :	:1 ;	l	0.015	:15	li:	l:	# 11	0.015	:1[:: : 0.1	:1	0.4 0.4 1.0	balance		Grade 16-	Grade 20.15		80:0
		ŀ	0.05	11.11	~ 1	:i ;	l	0.03	# []	li.	0.03	# 11	0.03	# []	0.03	:1	0.03	balance 0.03		Grade 15-	Grade 490.08		80:0
		Į:	0.20	11 11	0.20	:1 ;		0.25	# []	li:	0.25	# []	Oi	# []	0.18	:1	0.25 0.4	balance 0.10		O			
		: €	0.08	11.11	0.08	in dia		⊞ ⊞ 0:08	11	:	0.08	::::::	0:08	111	0.08 S.08	:1	0.08 18, 0 程	max total 0.015 0.30 TtaniumBalance 13 0.08		Element		Nitrogen, max 0.30	, max
Φ	Wemight rcent ^{A,B,C,D,E}	Palladium :::	70 10 10 10 10 10 10 10 10 10 10 10 10 10	Cobalt-	::: 6 0.08	Molybdenum-		Chromum 7	Nickel-	ıli	Ⅱ	Niobium 0.12- 0.25	Zirconium 9	Silicon-		each 0.12-	0.25 0.4 12 Residuals, 0.4	max total 0.015 Titanium		:1	184	Nitrogen, max 0.30	Carbor

Grade 24 Grade_{0.4}

Grade0.17

Grade 16H--

Grade 16-

Grade 15-

Element

		0.0				•											
	0.08	0.25 0.25 	4::-	:	l:	4+.0 0.08 14+.0	0.08 0.14	-	:			li	#! 41 :	li .	Į:	# 41 :	:
	0.04-0.06	0.30 0.25 0.25 0.25 	ļi.	i	l:	# # # # # # # # # # # # # # # # # # #	0.08 0.14	:	:	5.5-6.5		Iţ,	<u> </u> ::	:1	I;,	 	:1
	:1	0.40 0.20 0.20 0.20 5.6-	0.6-	8.6 8.4 7	4.5 5:4	: -:- -:-	:	0.04-	0.4- 0.08	3.5-4.5		:	0.15 0.3 0.8	14.0-16.0	:1		:1
	:1	0.40 0.20 0.20 0.20 5.5-	0.1	8.6 8.4 8.5 7	5.4	::I:0 ::	:	0.04-	0.1	E (1		ij	1111	:1	:	118	:1
	0.04	0.25 0.19 0.13 5.5- 6.5	:	8.6 6.4 6.5	4.5 F.5	# [] 	:	:	:1	# (I		il.	1111	:1	:	1111	:1
Grade	0.30	0.40 0.47 0.47 0.47 2.5- 3.5	:	:	:	# 	:	:	:1	# (I		:1	:1#	:1	:	- 19-0 - 15-0 - 15-0	0.04-0.08
Grade 26		0.30 0.30 0.42 3.0- 4.0															
Grade 25	0.05	0.30 0.30 0.42 3.04 4.0	:	7.5 8.5	b	ë Hr	2.5-3.5	eh	la t	3.0-4.0	6:4 6:4 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0	3.0-4.0 5.5- 6.5	: :	2.5-3.5	5.5-6.5 3.5- 4.5	: :	5.5-6.75 0.14
Grade 24	80.0 0.015 1.1 0.015 2.000 3.0	ds. iteh. av ca	: ıtalo	0: 6: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:	N nda	:	0.25	0.04	1 <u>265</u> e61-	: 00 : 	<u>1.0</u> :: 4101-a.	08 08:0 30a-8		0.000000000000000000000000000000000000	stm-b	: : 265-	0.40
Grade	0.015 0.015 0.015 0.015 0.015	0.20 0.04-0.08 0.015 	:1	: C	0.0	11	0.015	0.04-	:1	0.02		0.02 .::	3.5-4.5	0.015	0.0125	: :	0.015
Grade 240 03	0.015 0.015 0.015 0.03	0.30 0.03 0.03	:1	: O	0.0	11	0.03	0.04-	:1	0.03	11 11	0.03	:11	0.03	0.03	1111	0.05
Grade	0.255 9 0.015 0.0125 0.25	0.30 0.25 0.25	:1	: C	9	######################################	0.15	0.04-	:1	0.12	: - 14.0 - 0.34 - 0.34	0.12 .::	:11	0.17 2.2-3.2 2.2-3 3.2	0.13	:	0.20
Grade	0.08 0.015 0.015 0.08	0.30 0.30 0.08 :::	:1	: C	00.0	:: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	0.08	:	:1	0.05	3.5-4.5 3.5- 4.5	.::	0.04-0.08 0.4-	90.05 ::: :: ::	0.08	:1 =	0.08
184	15 Hydrogen, ^{B.C} max 0.4-0.6 125 16	Iron, max 0.015 Oxygen, max 16H Aluminum	0.04-0.08	Vanadium 17	<u>-</u>	Tin 0.04-0.08 Ruthenium	18	Palladium	0.04-0.08	Gebalt 19 Molybdenum	Molybdenum	20 Chromium	Chromium5 Nickel	21 Niobium Niobium 23	23 Zirconium	Zirconium5 Silicon	$\frac{24}{\text{Residuals,}^{D.E.F.}}$ max each