INTERNATIONAL STANDARD

First edition 2020-03

Smart community infrastructure — Electric power infrastructure — Measurement methods for the quality of thermal power infrastructure and requirements for plant operations and management

(https://standards.iteh.ai) Document Preview

ISO 37160:202

https://standards.iteh.ai/catalog/standards/iso/52d24ac8-851e-402d-a942-4cce48c6c9fc/iso-37160-2020

Reference number ISO 37160:2020(E)

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 37160:2020

https://standards.iteh.ai/catalog/standards/iso/52d24ac8-851e-402d-a942-4cce48c6c9fc/iso-37160-2020

COPYRIGHT PROTECTED DOCUMENT

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Page

Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Evaluation indicators for the QTPI during the operational phase 4.1 QTPI	3 3
 4.2 Elements of the QTPI	4 $ 4 $ $ 4 $ $ 5 $ $ 5 $ $ 5 $ $ 7 $ $ 10$
4.3.5 LCC [LCC considering the five other elements of QTP1] 5 Operation of thermal power infrastructure 5.1 General 5.2 Measurement 5.3 Data control 5.4 Analysis 5.5 Response to risks and opportunities 5.6 Operation control 5.7 Integrated management	10 11 12 12 13 13 14 14
Bibliography	10 18

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see <u>www.iso.org/</u> iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 268, *Sustainable cities and communities*, Subcommittee SC 1, *Smart community infrastructures*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

https://standards.iteh.ai/catalog/standards/iso/52d24ac8-851e-402d-a942-4cce48c6c9fc/iso-37160-2020

Introduction

This document describes methods for measuring the quality of thermal power infrastructure (QTPI) during the operational phase as well as the requirements for operations and management activities for the purpose of maintaining and improving the QTPI in the medium and long term in order to realize the objectives of the 3E+S (energy security, environmental conservation, economic efficiency, safety) energy policy. The 3E+S energy policy is a framework established to ensure QTPI during its operational phase.

Considering the importance of a sufficient and stable electric power supply to the economy, standard of living and day-to-day needs, electric power shortages or frequent power outages are serious risks to society. Maintaining and improving the QTPI is an important concern for all regions, particularly for regions in the process of rapid economic growth. A sufficient and stable electric power supply can be achieved by establishing thermal power infrastructure as planned and operating this effectively throughout its life cycle.

Reducing the environmental impacts associated with thermal power infrastructure, such as greenhouse gas (GHG) emissions, is a global issue and reduction of the impacts is a goal of this document. Minimizing the impacts needs to take into account the social costs of the environmental impact, the costs required for environmental protection measures and the effectiveness of these measures.

From these viewpoints, it is expected that efforts to maintain and improve the QTPI by applying appropriate operations and management will make society more sustainable. This document is intended to contribute to the Sustainable Development Goals outlined by the United Nations, specifically goal 7 (affordable and clean energy), goal 11 (sustainable cities and communities), goal 13 (climate action), goal 14 (life below water) and goal 15 (life on land).

(https://standards.iteh.ai) Document Preview

ISO 37160:2020

https://standards.iteh.ai/catalog/standards/iso/52d24ac8-851e-402d-a942-4cce48c6c9fc/iso-37160-2020

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>ISO 37160:2020</u> https://standards.iteh.ai/catalog/standards/iso/52d24ac8-851e-402d-a942-4cce48c6c9fc/iso-37160-2020

Smart community infrastructure — Electric power infrastructure — Measurement methods for the quality of thermal power infrastructure and requirements for plant operations and management

1 Scope

This document specifies methods for measuring the quality of thermal power infrastructure (QTPI) during the operational phase and requirements for operations and management activities.

It is intended for use by electric power providers, including public utilities and independent power producers (hereinafter collectively referred to as power plant operators), as well as relevant stakeholders that intend to maintain and improve QTPI.

NOTE The selection and importance of evaluation indicators resulting from the implementation of this document can vary depending on the characteristics of the power plant operator.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

https://st ISO Online browsing platform: available at https://www.iso.org/obp e48c6c9fc/iso-37160-2020

— IEC Electropedia: available at http://www.electropedia.org/

3.1

thermal power infrastructure

unit (3.2) or plant (3.3) generating electric power utilizing oil, gas, coal or biomass as fuel

3.2

unit

assembly of equipment required for operating one generator

Note 1 to entry: This could include, for example, a generator, turbine, boiler and balance of plant.

Note 2 to entry: When unit means a definite magnitude of quantity used as a standard of measurement, the term "unit of measure" is used in this document.

3.3

plant

entire premises including *units* (3.2) and the common facilities, land and buildings relating to the units

3.4 gross maximum capacity GMC

maximum output power that a *unit* (3.2) can generate in a specific period

3.5

net maximum capacity

NMC

output power calculated by subtracting the power of the auxiliary systems used by the unit (3.2) from the GMC (3.4)

Note 1 to entry: Depending on the objective of using NMC, either of the following two calculation methods can be applied.

- a) Plant NMC: the output power calculated by subtracting the *total internal consumption of the plant* (3.6) from *the plant* (<u>3.3</u>) GMC.
- Unit NMC: the output power calculated by subtracting the power consumption of the auxiliary systems for b) the particular unit from the unit GMC.

3.6

total internal consumption of the plant

summation of the power consumption of the auxiliary systems and general power consumption within the plant (3.3)

Note 1 to entry: General power consumption includes energy consumption of administration offices such as lighting and air conditioning.

3.7

equivalent unit derated hours EUNDH

value calculated by dividing the product of the derated output power amount and the derated output power time by the *NMC* (3.5)

3.8

available hours

AH

time during which the unit (3.2) is available for service

3.9

period hours lards, itch.ai/catalog/standards/iso/52d24ac8-851e-402d-a942-4cce48c6c9fc/iso-37160-2020 PH

time the *unit* (3.2) was intended to operate excluding unintended shutdown time resulting from natural disasters

3.10

service hours

SH

time that the *unit* (3.2) is electrically connected to an electric power grid and generating electric power

3.11

equivalent availability factor excluding seasonal deratings

EAF, XS

portion of a given operating period in which a generating unit (3.2) is available without any outage

3.12 heat rate

HR

value calculated by dividing the fuel input to the *unit* (3.2) by the generated power

3.13 forced outage hours FOH

time that a *unit* (3.2) did not operate due to forced outages

3.14 forced outage rate FOR

rate that a *unit* (3.2) was not available due to forced outages

3.15

ability to adjust power supply to demand

ability of a unit (3.2) to adjust its output power according to changes in demand

3.16

restricted time of the ability to adjust power supply to demand

time that the ability to adjust output power according to changes in demand is restricted

Note 1 to entry: The total time of the following are included.

- a) The time that the use of auto frequency control (AFC) or load frequency control (LFC) was restricted due to unplanned causes.
- b) The time that the output power of the *unit* (3.2) was constant due to unplanned causes.

Note 2 to entry: AFC is defined as the adjustment of output power using AFC devices to maintain the frequency of the electric system within a standard value.

Note 3 to entry: LFC is defined as detecting frequency variations and interconnected power variations caused by load variations and controlling the output power to maintain the frequency and power flow within standard values during normal operation.

3.17

emission rate

emissions of a given pollutant per *unit* (3.2) of output power over a given time period

EXAMPLE The value calculated by dividing the annual emissions by the annual power generation.

Note 1 to entry: Emission rate (of stacks) generally refers to SO_X , NO_X , CO_2 and particulate matter (PM) that are emitted from a unit.

<u>ISO 37160:2020</u>

http: **3.18** inducts.iteh.ai/catalog/standards/iso/52d24ac8-851e-402d-a942-4cce48c6c9fc/iso-37160-2020 industrial safety accident rate

number of people who became unable to work, the number of people whose work was restricted and the number of fatalities due to an accident per 200 000 or 1 000 000 man-hours worked

4 Evaluation indicators for the QTPI during the operational phase

4.1 QTPI

QTPI is an indication of the degree to which thermal power infrastructure consistently meets or exceeds requirements or expectations regarding:

- initial operation capability;
- supply stability;
- reliability;
- environmental and social considerations;
- safety;
- life cycle cost (LCC).

NOTE 1 The 3E+S is used to represent QTPI: energy security, environmental conservation, economic efficiency and safety.

ISO 37160:2020(E)

NOTE 2 The three sub-elements of energy security which are specific to thermal power infrastructure are:

- initial operation capability;
- supply stability;
- reliability.

NOTE 3 Environmental and social considerations are both used to indicate general aspects of the quality of infrastructure.

Figure 1 — Elements of the QTPI

https://standards.iteh.ai/catalog/standards/iso/52d24ac8-851e-402d-a942-4cce48c6c9fc/iso-37160-2020

4.2 Elements of the QTPI

4.2.1 General

Power plant operators shall consider the elements listed from <u>4.2.2</u> to <u>4.2.7</u> in order to maintain and continuously improve the QTPI during the operational phase. See <u>Figure 1</u>.

4.2.2 Initial operation capability

Initial operation capability means the ability to begin operation of thermal power infrastructure as planned and scheduled in accordance with relevant specifications and unit-specific conditions.

4.2.3 Supply stability

Supply stability means the ability of thermal power infrastructure to consistently supply electric power when required.

4.2.4 Reliability (reliable operation and fast recovery)

Reliable operation means to minimize internal forced outages of thermal power infrastructure as much as is practical and to safely deactivate the infrastructure without damaging the equipment.