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Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-member s, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the
ETS IPR online database.

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including I PR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETS| Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™, LTE™ and 5G™ logo are trademarks of ETSI registered for the benefit of its Members and of the
3GPP Organizational Partners. oneM 2M ™ |ogo is atrademark of ETSI registered for the benefit of its Members and of
the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Securing Artificial Intelligence (SAl).

Modal verbs terminology

In the present document “should", "should not", "may", "need not", "will", "will not", "can" and "cannot" areto be
interpreted as described in clause 3.2 of the ET S| Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Introduction

Artificial Intelligence (Al) and Machine Learning (ML) are fast becoming ubiquitousin amost every sector of society,
as Al systems are relied upon to maintain our security, prosperity and health. The compromise of Al systems can
therefore have significant impacts on the way of life of vast numbers of people.

However, like any information technology system, Al models are vulnerable to compromise, whether by deliberately
hostile or accidental action. One potential vector to compromise Al systemsis through the data used to train and operate
Al models. If an attacker can introduce incorrect, or incorrectly labelled, datainto the model training process, then a
model's learning process can be disrupted, and it can be made to produce unintended and potentially harmful results.

Thistype of attack can be extremely challenging to detect, particularly when, asisincreasingly common, the data used
to develop and train Al modelsis part of acomplex supply chain. Ensuring the provenance and integrity of the data
supply chain will therefore be akey aspect of ensuring the integrity and performance of critical Al-based systems.
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The present document has investigated existing mechanisms for carrying out this assurance. Al remains a

fast-devel oping discipline and no legal, policy or standards frameworks have been found that specifically cover data
supply chain security. Although many threats can be mitigated by following standard cybersecurity good practice, there
isvalue in producing standards and guidance tailored specifically to Al data supply chains. The conclusion to the

present document sets out a number of general principlesfor consideration in designing and implementing the data
supply chain for an Al system.
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1 Scope

The present document addresses the security problems arising from data supply chainsin in the development of
Artificial Intelligence (Al) and Machine Learning (ML) systems. Datais a critical component in the development of
AIML systems. Compromising the integrity of data has been demonstrated to be a viable attack vector against such
systems (see clause 4). The present document summarizes the methods currently used to source datafor training Al,
along with areview of existing initiatives for developing data sharing protocols. It then provides a gap analysis on these
methods and initiatives to scope possible requirements for standards for ensuring integrity and confidentiality of the
shared data, information and feedback.

The present document relates primarily to the security of data, rather than the security of models themselves. It is
recognized, however, that Al supply chains can be complex and that models can themselves be part of the supply chain,
generating new data for onward training purposes. Model security is therefore influenced by, and in turn influences, the
security of the data supply chain. Mitigation and detection methods can be similar for data and models, with poisoning
of one being detected by analysis of the other.

The present document focuses on security; however, dataintegrity is not only a security issue. Techniques for assessing
and understanding data quality for performance, transparency or ethics purposes are applicable to security assurance
too. An adversary aim can be to disrupt or degrade the functionality of a model to achieve a destructive effect. The
adoption of mitigations for security purposes will likely improve performance and transparency, and vice versa.

The present document does not discuss data theft, which can be considered a traditional cybersecurity problem. The
focusisinstead specifically on data manipulation in, and its effect on, AI/ML systems.

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, Bo Li:
"Manipulating Machine L earning: Poisoning Attacks and Countermeasures for Regression
Learning", 2018.

[i.2] Panagiota Kiourti, Kacper Wardega, Susmit Jha, Wenchao Li: "TrojDRL : Evaluation of Backdoor
Attacks on Deep Reinforcement Learning”, 2020.

[i.3] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, Xiaojin Zhu: "Adversarial Attacks on Stochastic
Bandits', 2018.

[i.4] Roel Schuster, Tal Schuster, Y oav Meri, Vitaly Shmatikov: "Humpty Dumpty: Controlling Word

M eanings via Corpus Poisoning", 2020.

[i.5] Hengtong Zhang, Tianhang Zheng, Jing Gao, Chenglin Miao, Lu Su, Yaliang Li, Kui Ren: "Data
Poisoning Attack against Knowledge Graph Embedding”.
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https://arxiv.org/abs/2001.04935
https://arxiv.org/abs/2001.04935
https://www.ijcai.org/proceedings/2019/0674.pdf
https://www.ijcai.org/proceedings/2019/0674.pdf
https://standards.iteh.ai/catalog/standards/etsi/74f93dde-2991-48cb-a6b4-d35888197363/etsi-tr-104-048-v1-1-1-2025-01

[i.6]

[i.7]

[i.8]

[i.9]

[i.10]

[i.11]

NOTE:

[i.12]
[i.13]

NOTE:

[i.14]

[i.15]

[i.16]

[i.17]

[i.18]

[i.19]

[i.20]

[i.21]

[i.22]

[i.23]

[i.24]
[i.25]

[i.26]

7 ETSI TR 104 048 V1.1.1 (2025-01)

Mingjie Sun, Jian Tang, Huichen Li, Bo Li, Chaowei Xiao, Yao Chen, Dawn Song: "Data
Poisoning Attack against Unsupervised Node Embedding Methods', 2018.

Qiang Yang, Yang Liu, Tianjian Chen, Yongxin Tong: "Federated Machine L earning: Concept
and Applications', ACM Transactions on Intelligent Systems and Technology, 2019.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Seraphin Calo, Prateek Mittal: "Model Poisoning
Attacks in Federated Learning. Workshop on Security in Machine Learning at Neural Information
Processing Systems’, 2018.

Peva Blanchard, EI Mahdi EI Mhamdi, Rachid Guerraoui, Julien Stainer: "Machine Learning with
Adversaries: Byzantine Tolerant Gradient Descent", Advances in Neural Information Processing
Systems, 2017.

Dong Yin, Yudong Chen, Kannan Ramchandran, Peter Bartlett: "Byzantine-Robust Distributed
Learning: Towards Optimal Statistical Rates', International Conference on Machine Learning,
2018.

Northrop Grumman, Al Data Supply Chains, 2020.

Reference not publicly available.

High-Level Expert Group on Al: "Ethics Guidelines for Trustworthy Al", 2019.

ETSI TR 104 221: "Securing Artificial Intelligence (SAl); Problem Statement”.

The above document updates the previously published ETSI GR SAI 004.

Ram Shankar Siva Kumar, Magnus Nystrom, John Lambert, Andrew Marshall, Mario Goertzel,
Andi Comissoneru, Matt Swann, Sharon Xia: "Adversarial Machine Learning - Industry

Perspectives', 2020.

CESI (China Electronics Standardization Institute): "Artificial Intelligence Standardization White
Paper. 2018 edition", 2020, English trand ation.

Microsoft®, MITRE®, et a.: "Adversarial ML Threat Matrix", 2020.

Corey Dunn, Nour Mustafa, Benjamin Peter Turnbull: "Robustness Evaluations of Sustainable
Machine Learning Models Against Data Poisoning Attacks in the Internet of Things',
Sustainability 12(16):6434, 2020.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, Michael Wellman: "SoK: Towards the
Science of Security and Privacy in Machine Learning”, 2016.

Battista Biggio, Fabio Roli: "Wild Patterns, Ten Y ears After the Rise of Adversarial Machine
Learning", 2018.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, Dawn Song: "Targeted Backdoor Attacks on Deep
Learning Systems Using Data Poisoning”, 2017.

Anirban Chakraborty, Manaar Alam, Visha Dey, Anupam Chattopadhyay, Debdeep
Mukhopadhyay: "Adversarial Attacks and Defenses: A Survey”, 2018.

Ram Shankar Siva Kumar, Jeffrey Snover, David O'Brien, Kendra Albert, Salome Viljoen:
"Failure Modesin Machine Learning", 2019.

Andrew Marshall, Jugal Parikh, Emre Kiciman, Ram Shankar Siva Kumar: "Threat Modeling
Al/ML Systems and Dependencies’, 2019.
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[i.27] ETSI TR 104 222: " Securing Artificial Intelligence (SAl); Mitigation Strategy Report”.
NOTE: The above document updates the previously published ETSI GR SAI 005.

[i.28] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph, Benjamin |. P. Rubinstein,
Udam Saini, Charles Sutton, J.D. Tygar, Kai Xia: "Exploiting Machine Learning to Subvert Y our
Spam Filter", 2008.

[i.29] Olakunle Ibitoye, Rana Abou-Khamis, Ashraf Matrawy, M. Omair Shafiqg: "The Threat of
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[1.30] Cynthia Rudin: " Stop Explaining Black Box Machine Learning Models for High Stakes Decisions
and Use Interpretable Models Instead”, 2019.

[i.31] ENISA (European Union Agency for Cybersecurity): " Cybersecurity Challenges in the Uptake of
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[1.32] Bret Cohen, Aaron Lariviere, Tim Tobin: "Understanding the new California Privacy Rights Act:
How businesses can comply with the CPRA", 25 November 2020.

[1.33] Ibrahim Hasan: " California Consumer Privacy Act. The Law Society Gazette", 13 July 2020.

[i.34] Linklaters: "Data Protected -- Russia', March 2020.

[i.35] DoralLuo, Yanchen Wang: "China -- Data Protection Overview", OneTrust DataGuidance,
November 2020.

[1.36] Tomoki Ishiara: "The Privacy, Data Protection and Cybersecurity Law Review: Japan”,
October 2020.

[1.37] Linklaters: "Data Protected - Germany", March 2020.

[1.38] Australian Government: " Guide to securing personal information™, Office of the Australian
Information Commissioner, 5 June 2018.

[1.39] James Walsh: " Security in the supply chain - a post-GDPR approach”. Computer Weekly,
7 November 2019.

[i.40] Vyacheslav Khayryuzov: "The Privacy, Data Protection and Cybersecurity Law Review: Russia’,
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[i.41] ETSI TS 119 312: "Electronic Signatures and Infrastructures (ESI); Cryptographic Suites'.

[i.42] BSI (Bundesamt fur Sicherheit in der Informationstechnik): " Minimum Reguirements for

Evaluating Side-Channel Attack Resistance of RSA, DSA and Diffie-Hellman Key Exchange
Implementations”, 2013.

[i.43] Christian Berghoff: "Protecting the integrity of the training procedure of neural networks",
14 May 2020.
[i.44] Openlmages V6.

NOTE: Thereferenceisto aspecific version of the Openlmages collection although the collection is regularly
updated (https.//storage.googl eapis.com/openi mages/web/download v6.html).

[i.45] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, Neil Zhengiang Gong: "Local Model Poisoning Attacks
to Byzantine-Robust Federated Learning”, 2020.
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Erdogdu, Ross Anderson: "Manipulating SGD with Data Ordering Attacks®, 2021.
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[i.48] Don DeBold.

[i.49] BSI: "Guidelines for Evaluating Side-Channel and Fault Attack Resistance of Elliptic Curve
Implementations”.

NOTE: Updated in 2024 from earlier document from 2016 "Minimum Reguirements for Evaluating Side-Channel
Attack Resistance of Elliptic Curve Implementations’.

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:

artificial intelligence: ability of a system to handle representations, both explicit and implicit, and procedures to
perform tasks that would be considered intelligent if performed by a human

availability: property of being accessible and usable on demand by an authorized entity
confidentiality: assurance that information is accessible only to those authorized to have access

data injection: introducing malicious samples of datainto a training dataset

data modification: tampering with training data to affect the outcome of a model trained on that data

federated lear ning: machine learning process where an algorithm is trained collaboratively across multiple devices
holding local data samples

integrity: assurance of the accuracy and completeness of information and processing methods

label modification; tampering with the labels used on training data to affect the classifications produced by a model
trained on that data

machine lear ning: branch of artificial intelligence concerned with algorithms that learn how to perform tasks by
analysing data, rather than explicitly programmed

reinfor cement learning: paradigm of machine learning where a policy defining how to act is learned by agents through
experience to maximize their reward, and agents gain experience by interacting in an environment through state
transitions

supervised learning: paradigm of machine learning where al training datais|abelled, and a model can be trained to
predict the output based on a new set of inputs

unsupervised lear ning: paradigm of machine learning where the data set is unlabelled, and the model |ooks for
structure in the data, including grouping and clustering

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

Al Artificial Intelligence

APPI Act on the Protection of Personal Information (Japan)
CCPA California Consumer Privacy Act

CCTVv Closed Circuit TeleVision

Cl/cD Continuous I ntegration/Continuous Deployment
CPRA Cdifornia Privacy Rights Act
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CsP Cloud Storage Provider
GDPR General Data Protection Regulation (EU)
ICT Information and Communications Technology
IEC International Electrotechnical Commission
ISO International Organization for Standardization
ML Machine Learning
NIST National Institute of Standards and Technology
RL Reinforcement Learning
RONI Reject On Negative Impact
SAI Securing Artificial Intelligence
4 The importance of data integrity to Al security
4.1 General

Traditionally, cybersecurity involves restricting access to sensitive systems and components. In an Al system, however,
fundamental operation relies on continued access to large volumes of representative data. The acquisition, processing
and labelling of datasets is extremely resource-intensive, particularly in the quantities often required to create accurate
models. Models are frequently pre-trained, or used outside of the organization where they were developed. As users
increasingly look outside their organizations to access labelled datasets, the attack surface increases, and it becomes
ever more vital to assure the provenance and integrity of training data throughout its supply chain.

According to ETSI's Securing Artificial Intelligence Problem Statement (ETSI TR 104 221 [i.13]), in a poisoning
attack, an attacker seeks to compromise a model, normally during the training phase, so that the deployed model
behavesin away that the attacker desires. This can mean the model failing based on certain tasks or inputs, or the
model learning a set of behaviours that are desirable for the attacker, but not intended by the model designer. Data
poisoning can be done during the data acquisition or curation phases (see clause 5) and can be very hard to detect since
training data sets are typically very large and can come from multiple, distributed sources, see ETSI TR 104 221 [i.13].

The mgjority of research into the consequences of data integrity compromise has focussed on supervised learning.
However, poisoning of Reinforcement Learning (RL) and unsupervised models has also been demonstrated.

NOTE: Poisoning of upstream models viatheir training data can lead to misbehaviour of downstream models of a
different type.

EXAMPLE 1. The misclassification of aroad sign leads to an autonomous vehicle RL agent failing to take the
correct action.

EXAMPLE 2: Compromise of alanguage model, used to preprocess text for aemail classifier, can lead to
malicious emails evading a phishing filter.

4.2 Consequences of data integrity compromise

Fundamentally, a data supply chain compromise represents the compromise of any model using that data, and hence any
system using that model. Different types of supply chain attack are discussed in clause 4.3 and a number of case studies
showing the potential for damage to an organization in the event of data compromise are given in clause 4.4.

Broadly speaking, an attack can be generic, resulting in denial or degradation of service; or targeted, aiming to cause a
model to behave in a specific way [i.19]. Though poisoning attacks typically affect the integrity of data, ETSI

TR 104 222 [i.27] notes that they can also be considered attacks on availability, asthe aim of an attacker can be to
increase misclassification to the point of making a system unusable, see ETS| TR 104 222 [i.27].

Alteration or deletion of data or labels used to develop and train a model would affect the model's performance, causing
it to become degraded, inoperable or untrustworthy. Thistype of attack would likely result in operational disruption,
financial harm or reputational damage to any organization relying on the affected data[i.16]. Al systemsarein
widespread use across a host of different industries and are increasingly used in controlled environments where they can
be trained, for example, on sensitive military, financial or healthcare data. If a model is affected by such attacks, this
would have significant real world consequences[i.18].
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