This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: A644-05 Designation: A 644 - 09

Standard Terminology Relating to Iron Castings¹

This standard is issued under the fixed designation A 644: the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

ausferrite, n—a cast iron matrix microstructure, produced by a controlled thermal process, which consists of predominantly acicular ferrite and high carbon austenite. (See austempered ductile iron.)

austempered ductile iron, n—a ductile cast iron that has been produced by a controlled thermal process which results in a matrix microstructure consisting of predominately acicular ferrite and high carbon austenite.

austenitize, *vt*—to convert the matrix of a ferrous alloy to austenite by heating above the transformation temperature.

batch, *n*—the component raw materials properly weighed, proportioned, and mixed for delivery to a processing unit. Also, the product output from a processing unit in which there is essentially no product output until all component materials are charged and processed.

brittle fracture, *n*—fracture that occurs without appreciable plastic deformation of the material.

brittle fracture area, n—The fraction or percent of the fracture surface that formed by brittle fracture. (When observed with no or low magnification, brittle fracture appears whiter and shinier than ductile fracture.)

capability index (C_n) , *n*—for a stable process, the specification range divided by six times the standard deviation.

$$C_p = \frac{(USL - LSL)}{(USL - LSL)}$$

capability index (C_{pk}), *n*—for a stable process, the smaller of the upper capability index (CPU) or the lower capability index (CPL).

carbide, primary, *n*—carbide precipitated in cast iron during solidification.

- cast iron, *n*—a generic term for a series of alloys primarily of iron, carbon, and silicon in which the carbon is in excess of the amount which can be retained in solid solution in austenite at the eutectic temperature.
- cementite, n—a very hard and brittle compound of iron and carbon corresponding to the empirical formula Fe ₃C, commonly known as iron carbide.

cementite, primary, *n*—cementite precipitated in cast iron during solidification. Also known as primary carbide. (See cementite.) chill, n—an object, usually metal, imbedded in a portion of the mold to accelerate the local rate of heat removal from the metal

being cast.

chill, v—to accelerate the freezing rate of cast iron, usually in a localized region, to refine the graphite structure or cause formation of primary carbides.

chill, microstructural, *n*—a localized region of primary carbides in a casting made from a cast iron that would normally solidify free of primary carbides.

chilled iron, n—a cast iron that would normally solidify free of primary carbide which is purposely caused to solidify as white cast iron, locally or entirely, by accelerated cooling.

compacted graphite iron, n—a cast iron that has been treated in the liquid state so as to cause its graphitic carbon to occur in the compacted graphite shape in the as-cast condition. (See graphite, compacted and graphite, spheroidal.)

compound, *n*—an intimate mixture of all the ingredients necessary for a finished material or product.

compression gasket, *n*—a gasket designed to be used under compression.

compression seal, *n*—a seal that is attained by a compressive force on the sealing material.

confidence level, *n*—the probability, or expected percent of the times, that the selected percent (P %) of the actual population lies within the tolerance interval calculated from the data sample.

direct reduced iron, n—iron ores that have been reduced to essentially metallic iron by heat and reducing agents, but without melting, and processed into suitable shapes (typically pellets) for use as a charge material in a melting operation.

dual metal, n-two metals of different composition that are fusion bonded at all interfacial surfaces by casting metal of one

¹ This terminology is under the jurisdiction of ASTM Committee A04 on Iron Castings and is the direct responsibility of Subcommittee A04.91 on Editorial Matters and Nomenclature

Current edition approved Nov.June 1, 2005.2009. Published December 2005.July 2009. Originally approved in 1971. Last previous edition approved in 20032005 as A644-98(2003): A 644 - 05.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States

composition against metal of a second composition.

ductile fracture, *n*—fracture that occurs with appreciable plastic deformation of the material.

ductile fracture area, *n*—The fraction or percent of the fracture surface that formed by ductile fracture. (When observed with no or low magnification, ductile fracture appears grayer and duller than brittle fracture.)

ductile iron, *n*—a cast iron that has been treated in the liquid state so as to cause substantially all of its graphitic carbon to occur as spheroids or nodules in the as-cast condition.

durometer—(1) an instrument for measuring the hardness of rubber-like materials. (2) a term used to identify the relative hardness of rubber-like materials, for example: "low durometer" (relatively soft) or "high durometer" (relatively hard).

elastomer, *n*—a macromolecular material that returns rapidly to approximately its original dimensions and shape after substantial deformation by a weak force and release of the force.

Discussion—(a) Elastomers are divided into two major polymer systems: thermoset and thermoplastic. (b) In standards for rubber, the word elastomer is not to be used interchangeably for the term "rubber".

elongation, *n*—extension produced by a tensile stress.

ferritize, vt—to increase the quantity of ferrite in the matrix of a ferrous casting through an appropriate heat treatment.

ferritizing anneal, *n*—the process of producing a predominantly ferritic matrix in cast iron through an appropriate heat treatment. **gasket**, *n*—any preformed, deformable device designed to be placed between two adjoining parts to provide a seal.

graphite, **compacted**, *n*—a graphite shape that is intermediate between flake graphite and nodular graphite that typically appears in a polished section as thick flakes with blunt (compacted) ends.

- graphite flake, *n*—an irregularly shaped particle of graphite, usually appearing in a polished section as curved plates, such as found in gray cast irons.
- graphite, nodular, *n*—spheroidal shaped graphite typically found in ductile irons and compact clusters of graphite typically found in malleable irons. (See graphite, spheroidal, and temper carbon.)

graphite, primary, *n*—graphite precipitated in cast iron during solidification.

- **graphite rosette**, *n*—arrangement of graphite flakes in which the flakes extend radially from centers of crystallization in gray cast iron.
- **graphite**, **spheroidal**, *n*—spheroidal shaped graphite having a polycrystalline radial structure, usually found in ductile iron and to a controlled, limited extent in compacted graphite iron.
- graphitize, vt—to precipitate graphite in an iron-carbon alloy.
- **gray iron**, *n*—cast iron that has a relatively large proportion of the graphitic carbon present in the form of flake graphite. The metal has a gray fracture.

hardness, *n*—the resistance to indentation as measured under specified conditions.

- **heat**, *n*—the total molten metal output from a single heating in a batch melting process or the total molten metal output from essentially a single heating in a continuous melting operation using basically constant charge and processing conditions and targeted at a fixed metal chemistry at the furnace spout. A heat can also be defined as a fixed time period for a continuous melting operation provided that it is shorter than the time period covered by the above definition.
- **hydrostatic pressure**, *n*—a state of stress in which all the principal stresses are equal (and there is no shear stress), as in a liquid at rest; the product of the unit weight of the liquid and the difference in elevation between the given point and the free liquid elevation.
- inoculated iron, *n*—cast iron, either liquid or solid, to which one or more inoculating alloys have been added while the iron was in the molten state.

inoculated iron, fully, *n*—cast iron, either liquid or solid, to which all molten metal additions, including all inoculating alloys, have been added.

inoculating alloy, *n*—an alloy added to molten iron for the principle purpose of nucleating a primary phase such as graphite. Inoculating alloys are frequently used to avoid the formation of primary carbide by enhancing the nucleation of graphite.

lot, *n*—a finite quantity of a given product manufactured under production conditions that are considered uniform.

lower capability index (CPL), *n*—the difference between the sample mean (\bar{x}) and the lower specification limit divided by three times the standard deviation.

$$CPL = \frac{(\bar{x} - LSL)}{3 \times s}$$

lower specification limit (LSL), *n*— the lowest specified value.

M, *n*—the number of standard deviations, mutually concurred by the supplier and purchaser, to be used for calculations of statistical conformance to such items as minimums, maximums, specification ranges, and process capability indices.

DISCUSSION—*M* values of three or less were used in establishing initial ASTM specification limits; higher values of *M* result in reduced allowable variability for actual values when the property of interest is bounded on both sides; in the case of a minimum or maximum, a high value of *M* can result in the need for excessively high or low mean property values (\bar{x}).

malleable, ferritic, n—a ferrous alloy that is cast as white iron but which is converted by an appropriate heat treatment to a