INTERNATIONAL STANDARD

ISO 22514-3

Second edition 2020-12

Statistical methods in process management — Capability and performance —

Part 3:

Machine performance studies for measured data on discrete parts

(S Méthodes statistiques dans la gestion de processus — Aptitude et performance —

Partie 3; Études de performance de machines pour des données https://standards.iteh.mesurées.sur.des.parties/discrètes4b7-94fb-

6c95db3a9026/jso-22514-3-2020

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 22514-3:2020 https://standards.iteh.ai/catalog/standards/sist/e628f702-961f-44b7-94fb-6c95db3a9026/iso-22514-3-2020

COPYRIGHT PROTECTED DOCUMENT

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents								
For	eword		iv					
Intr	oductio	n	v					
1	Scon	e	1					
2	_	native references						
3	Terms and definitions							
4	Symbols							
5	Pre-conditions for application							
	5.1	General						
	5.2 5.3	Number of parts to be used in the study	Z					
	5.3 5.4							
	5.5	Running the study	3					
	5.6	Special circumstances	3					
6	Data	collection						
U	6.1	Traceability of data	3					
	6.2	Retention of specimens						
	6.3	Data recording	4					
7	Anal	vsis	4					
7	7.1	ysis General Teh STANDARD PREVIEW	4					
	7.2	Run chart 7.2.1 Purpose (standards.iteh.ai)	4					
		7.2.1 Purpose	4					
	7.3	7.2.2 Review the plot	4					
	7.3	7.2.2 Review the plot	5 5					
		7.3.2 Check the nattern of the data 2514-3-2020	6					
		7.3.3 Summarize the data	6					
		7.3.4 Manual approach						
	7.4	Produce a probability plot						
		7.4.1 General						
	7 5	7.4.2 Analyse the data						
	7.5	Special cases						
		7.5.2 Bimodal data						
		7.5.3 Truncated data						
		7.5.4 Censored data	13					
	7.6	Calculation of machine performance indices						
		7.6.1 General procedure						
		7.6.2 Data following a normal distribution	14					
8	_	orting						
	8.1	1						
	8.2	Confidence intervals						
		8.2.1 General 8.2.2 Indices calculated with the data following a normal distribution						
		8.2.3 Indices calculated with data following a non-normal distribution						
9	Actio	ons following a machine performance study	16					
Ann	ex A (in	formative) Tables and worksheets	17					
Bib	iograpl	ıy	19					

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 69, Applications of statistical methods, Subcommittee SC 4, Applications of statistical methods in product and process management.

This second edition cancels and replaces the first edition (480 22514-3:2008), which has been technically revised.

The main changes compared to the previous edition are as follows:

updated and improved figures and computer outputs.

A list of all parts in the ISO 22514 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

This document has been prepared to provide guidance in circumstances where a study is necessary to determine if the output from a machine, for example, is acceptable according to some criteria. Such circumstances are common in engineering when the purpose for the study is part of an acceptance trial. These studies can also be used when diagnosis is required concerning a machine's current level of performance or as part of a problem-solving effort. The method is very versatile and has been applied to many situations.

Machine performance studies of this type provide information about the behaviour of a machine under very restricted conditions such as limiting, as far as possible, external sources of variation that are commonplace within a process, e.g. multi-factor and multi-level situations. The data gathered in a study might come from items made consecutively, although this may be altered according to the study requirements. The data are assumed to have been, generally, gathered manually.

The study procedure and reporting are of interest to engineers, supervisors and management wishing to establish whether a machine should be purchased or put in for maintenance, to assist in problem-solving or to understand the level of variation due to the machine itself.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 22514-3:2020 https://standards.iteh.ai/catalog/standards/sist/e628f702-961f-44b7-94fb-6c95db3a9026/iso-22514-3-2020

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 22514-3:2020 https://standards.iteh.ai/catalog/standards/sist/e628f702-961f-44b7-94fb-6c95db3a9026/iso-22514-3-2020

Statistical methods in process management — Capability and performance —

Part 3:

Machine performance studies for measured data on discrete parts

1 Scope

This document describes the steps for conducting short-term performance studies that are typically performed on machines (including devices, appliances, apparatuses) where parts produced consecutively under repeatability conditions are considered. The number of observations to be analysed vary according to the patterns the data produce, or if the runs (the rate at which items are produced) on the machine are low in quantity. The methods are not considered suitable where the sample size produced is less than 30 observations. Methods for handling the data and carrying out the calculations are described. In addition, machine performance indices and the actions required at the conclusion of a machine performance study are described.

This document is not applicable when tool wear patterns are expected to be present during the duration of the study, nor if autocorrelation between observations is present. The situation where a machine has captured the data, sometimes thousands of data points collected in a minute, is not considered suitable for the application of this document.

ISO 22514-3:2020

https://standards.iteh.ai/catalog/standards/sist/e628f702-961f-44b7-94fb-

2 Normative references 6c95db3a9026/iso-22514-3-2020

There are no normative references in this document.

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

4 Symbols

P probability

 $P_{\rm m}$ machine performance index

 P_{mk} , lower machine performance index

 $P_{mk_{II}}$ upper machine performance index

 $P_{\rm mk}$ minimum machine performance index

f absolute frequency

ISO 22514-3:2020(E)

Σf	cumulative absolute frequency
$\Sigma f\%$	cumulative relative frequency in percent
i	control variable, subscript used to identify the values of a variable
L	lower specification limit
n	sample size
$X_{\alpha\%}$	lpha % distribution fractile, percentile
X_i	i th value in a sample
σ	standard deviation, population
S	standard deviation, sample statistic
U	upper specification limit
z_{α}	fractile of the standardized normal distribution from $-\infty$ to α
μ	population mean value in relation to the machine location
\overline{X}	arithmetic mean value, sample
χ^2_{lpha}	fractile of the chi-squared distribution ARD PREVIEW
	(standards.iteh.ai)

5 Pre-conditions for application

ISO 22514-3:2020

5.1 General

https://standards.iteh.ai/catalog/standards/sist/e628f702-961f-44b7-94fb-6c95db3a9026/iso-22514-3-2020

The pre-conditions given in <u>5.2</u> and <u>5.6</u> are the minimum and may be exceeded if needed. In this type of study, it is important to maintain constant all factors, other than the machine, which can influence the results, if the study is to properly represent the machine itself, e.g. the same operator, same batch of material, etc.

5.2 Number of parts to be used in the study

The number specified is usually 100. However, if the pattern of variation is expected to form a non-normal distribution, the number of parts should be at least 100. The methods given within this document may also be used when conducting audits of a process, in which case the number of measurements taken might be less than the above number, e.g. 50.

NOTE 1 This is to ensure that a reasonably narrow confidence interval can be calculated for the machine performance indices when a normal distribution has been used. The interval is approximately $\pm 12~\%$ of the estimated index with a confidence of 90 % for samples of 100.

Some machines have very slow cycle times and a 'run' cannot produce 100 parts. In such circumstances, it is necessary to proceed with available data. The minimum number that this document recommends with the methods described herein is 30.

NOTE 2 Special techniques beyond the scope of this document exist for smaller sample sizes.

By contrast, for a machine that produces parts at a very high rate, e.g. a rivet-making machine, the sampling strategy can require alteration since 100 parts can be produced in a few seconds. In circumstances such as these, several studies can be required each allowing a different sampling approach to examine the machine's behaviour.

5.3 Materials to be used

Ensure all input materials to be used in the study have been checked, conform to specifications and belong to the same batches. It is not advised that a study be conducted with materials that are outside specification since this could lead to unrepresentative results.

Care should be exercised not to introduce any other sources of variation other than those to be studied. A typical example is where a machine run has to change to another batch of a particular material within a single process batch, and batch material variation is not included in the study. In this instance, only data taken while the first batch of that particular material was in use should be used in the analysis.

5.4 Measurement system

Ensure the measurement system used during the study has adequate properties and is calibrated, and the measurement system variation has been quantified and minimized. Special studies on the measurement system should be undertaken to establish the amount of variation present due to measuring. The measurement system should ideally have a combined standard uncertainty $u_{\rm MS}$ of less than 10 % of the standard deviation of the characteristic that the machine study is to investigate, as determined through a properly conducted measurement systems analysis. This analysis should address the issues of bias, calibration, linearity and discrimination. The resolution shall be lower than 1/20 of the specification interval.

It is appropriate to calculate the expanded uncertainty $U_{\rm MP}$ of the measurement process and to express the result as a percentage of a given tolerance. If the expanded uncertainty $U_{\rm MP}$ does not exceed 15 % of the tolerance it may be regarded as acceptable, dependent upon application. If it exceeds 15 %, the measurement process should be regarded as inappropriate. Should a study be performed using a measurement process with an uncertainty worse than these recommendations, some wrong conclusions can be drawn from the study. Refer to ISO 22514-7 for more information about the calculation of the measurement system and measurement process capability. Users who prefer doing measurement systems analysis and gauge repeatability and reproducibility can refer to ISO/TR 12888 for more information.

5.5 Running the study

Ensure an uninterrupted run takes place, under normal operating conditions. This includes any warm-up time for the machine necessary to bring it up to its usual operating condition and with the machine set at nominal for the characteristic to be studied. If the machine is stopped during the study for whatever reason, either re-run the study or analyse the data collected, as long as sufficient data have been collected and as long as the repeatability conditions have not been violated. Under no circumstance shall less than 30 consecutive results be used, to conclude the acceptance of the machine performance.

5.6 Special circumstances

In a multiple fixture set-up, multiple-cavity or multi-stream situation, each station, fixture, cavity or stream should be treated as a separate machine for machine performance purposes since those streams can violate the repeatability conditions.

In the case of a multiple-cavity tool, some extra studies may be performed to examine the between-cavity and within-cavity variation, see ISO 22514-8.

6 Data collection

6.1 Traceability of data

It is important for all data to be traceable so that unexpected values can be investigated. The collection sequence should be preserved so that a time series can be plotted of the data that might indicate unexpected variations. Such occurrences should be explained, and a decision taken about the

ISO 22514-3:2020(E)

admissibility of such data. A 'log-book' would be suitable for recording all machine settings, including any prior work on the machine, e.g. maintenance, and for recording all events during the study, such as adjustments.

6.2 Retention of specimens

Unless the tests performed are destructive in their nature, all specimens should be retained so that all necessary examinations can be made. They should only be disposed of once the study is complete and all conclusions determined.

6.3 Data recording

Data should be clearly recorded either electronically or on the appropriate analysis sheet in numerical form to the appropriate number of significant digits, often one significant digit more than that of the tolerance. This should be determined prior to the measuring process and is dependent on the resolution of the measuring instrument.

7 Analysis

7.1 General

The analysis of the data generated in the study is often performed using computer programs, or by manual means, examples of which are given within this clause PREVIEW

7.2 Run chart

(standards.iteh.ai)

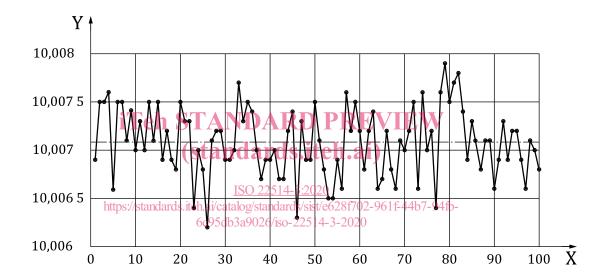
7.2.1 Purpose

ISO 22514-3:2020

When conducting a machine study, it is important to understand whether the data collected form a single and stable pattern or not. There are occasions when the conditions within the machine under study lead to a drift in its settings that influence the pattern of data produced. There might be occasions when an unauthorized adjustment has been made to the machine, or data have been mixed in some way. Such an event should stop the study and a new study should be begun. A run chart is helpful to identify such circumstances. The pattern on the run chart in Figure 1 (see also Table 1) might have been caused by a slight trend within the first 25 items or something might have gone wrong with the machine itself or it is being used wrongly.

If such a systematic influence had been proven, it would have been necessary to take special measures according to the circumstances. These might range between repeating the whole study to analysing the data in its separate parts or eliminating certain results.

ISO 7870-1 contains guidance about the application of control charts and their associated statistical tests that should be applied to plots such as that shown in <u>Figure 1</u> to assist with the interpretation of the plots.


7.2.2 Review the plot

Inspect the plot for evidence of instability. This can appear as a step change in the data. Other patterns might appear such as a drift. It is possible to use control limits and control chart rules to assess, easily, for any other assignable causes in the data. The data might be put into an individual and moving range chart to check for potential outliers in the data. (See ISO 7870-2 for further information about such limits and rules.)

There exists a number of software products that can replace the manual methods. These have become popular because they produce the graphs mentioned above quickly and easily.

Sample No.	1 to 10	11 to 20	21 to 30	31 to 40	41 to 50	51 to 60	61 to 70	71 to 80	81 to 90	91 to 100
	10,006 9	10,007 3	10,007 3	10,006 9	10,007 0	10,007 1	10,0068	10,007 2	10,007 7	10,006 9
	10,007 5	10,007 0	10,007 3	10,007 0	10,006 7	10,0068	10,007 2	10,007 5	10,007 8	10,007 3
	10,007 5	10,007 5	10,006 4	10,007 7	10,006 7	10,006 5	10,007 4	10,006 6	10,007 4	10,006 9
	10,007 6	10,007 1	10,007 0	10,007 3	10,007 2	10,006 5	10,006 6	10,007 6	10,006 9	10,007 2
Diameter	10,006 6	10,007 5	10,0068	10,007 5	10,007 4	10,006 9	10,006 7	10,007 0	10,007 3	10,007 2
in mm	10,007 5	10,006 9	10,006 2	10,007 4	10,006 3	10,006 6	10,007 2	10,007 2	10,007 1	10,006 9
	10,007 5	10,007 2	10,007 1	10,007 0	10,007 3	10,007 6	10,0068	10,006 4	10,0068	10,006 6
	10,007 1	10,006 9	10,007 2	10,006 7	10,006 9	10,007 2	10,006 6	10,007 6	10,007 1	10,007 1
	10,007 4	10,0068	10,007 2	10,006 9	10,006 9	10,007 5	10,007 1	10,007 9	10,007 1	10,007 0
	10,007 0	10,007 5	10,006 9	10,006 9	10,007 5	10,007 2	10,007 0	10,007 5	10,006 6	10,0068

Table 1 — Example 1 — Example of observed values

Key

- X observation number (i)
- Y diameter in mm

Figure 1 — Example 1 — Run chart

7.3 Analyse the pattern of the data

7.3.1 Software approach

The data should be entered into a software tool and a histogram produced of the data. There exist a number of suitable software products that carry out such analysis. Figure 2 shows the histogram of the data from Figure 1.