

TECHNICAL REPORT

ISO/TR
11462-3

First edition
2020-06

Guidelines for implementation of statistical process control (SPC) —

Part 3: Reference data sets for SPC software validation

iTEH Standards
Lignes directrices pour la mise en œuvre de la maîtrise statistique des
processus (MSP) —
(<https://standards.iteh.ai>)
Partie 3: Jeux de données de référence pour la validation de logiciels
pour MSP
Document Preview

[ISO/TR 11462-3:2020](#)

<https://standards.iteh.ai/catalog/standards/iso/9ae32517-4789-4df7-8e69-4b5f7cbf25a6/iso-tr-11462-3-2020>

Reference number
ISO/TR 11462-3:2020(E)

© ISO 2020

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO/TR 11462-3:2020](https://standards.iteh.ai/catalog/standards/iso/9ae32517-4789-4df7-8e69-4b5f7cbf25a6/iso-tr-11462-3-2020)

<https://standards.iteh.ai/catalog/standards/iso/9ae32517-4789-4df7-8e69-4b5f7cbf25a6/iso-tr-11462-3-2020>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

Page

Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions, and symbols and abbreviated terms	1
3.1 Terms and definitions	1
3.2 Symbols and abbreviated terms	2
4 Overview of the test examples	3
5 Reference data sets description and evaluation	4
5.1 Test data set 1	4
5.1.1 Test data set 1 information	4
5.1.2 Test data set 1 results	6
5.2 Test data set 2	13
5.2.1 Test data set 2 information	13
5.2.2 Test data set 2 results	14
5.3 Test data set 3	21
5.3.1 Test data set 3 information	21
5.3.2 Test data set 3 results	23
5.4 Test data set 4	32
5.4.1 Test data set 4 information	32
5.4.2 Test data set 4 results	34
5.5 Test data set 5	43
5.5.1 Test data set 5 information	43
5.5.2 Test data set 5 results	45
5.6 Test data set 6	53
5.6.1 Test data set 6 information	53
5.6.2 Test data set 6 results	55
5.7 Test data set 7	63
5.7.1 Test data set 7 information	63
5.7.2 Test data set 7 results	65
5.8 Test data set 8	73
5.8.1 Test data set 8 information	73
5.8.2 Test data set 8 results	75
5.9 Test data set 9	82
5.9.1 Test data set 9 information	82
5.9.2 Test data set 9 results	85
5.10 Test data set 10	92
5.10.1 Test data set 10 information	92
5.10.2 Test data set 10 results	95
5.11 Test data set 11	102
5.11.1 Test data set 11 information	102
5.11.2 Test data set 11 results	103
Annex A (informative) Test data values	105
Bibliography	129

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 69, *Applications of statistical methods*, Subcommittee SC 4, *Applications of statistical methods in process management*.

A list of all parts in the ISO 11462 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

The test examples given in this document were developed for the assessment of statistical process control (SPC) systems. They allow SPC software developers to evaluate their systems. Thus, the end user of those systems can be sure that the data sets are evaluated correctly with a high level of reliability. In order to cover the widest possible spectrum, suitable data sets were prepared individually for various constellations. The evaluation results of those data sets are documented and commented on the following pages.

The results were verified multiple times using different computer programs. This turns the data sets and the results into references for validation of the software. The data sets are listed in Annex A. An electronic version is available at <https://standards.iso.org/iso/tr/11462/-3/ed-1/en/>.

iTeh Standards (<https://standards.iteh.ai>) Document Preview

[ISO/TR 11462-3:2020](https://standards.iteh.ai/catalog/standards/iso/9ae32517-4789-4df7-8e69-4b5f7cbf25a6/iso-tr-11462-3-2020)

<https://standards.iteh.ai/catalog/standards/iso/9ae32517-4789-4df7-8e69-4b5f7cbf25a6/iso-tr-11462-3-2020>

Guidelines for implementation of statistical process control (SPC) —

Part 3: Reference data sets for SPC software validation

1 Scope

This document describes examples for software validation for SPC software implementing the standards of the ISO 7870 series on control charts and the ISO 22514 series on capability and performance. In detail ISO 7870-2, ISO 22514-2 and ISO 22514-8 are covered.

It provides data sets and test results for testing the implementation of the evaluation methods described in these standards. This includes the detection of out of control situations as well as the calculation of sample statistics and process capability indices.

The test examples cover the following situations:

- a) General:
 - different sample and subgroup sizes, accuracy of calculation for large/small numbers;
- b) ISO 22514 series:
 - calculation of sample statistics for location and dispersion;
 - different distribution models;
- c) ISO 7870-2:
 - calculation of control limits;
 - visualization of data (histogram, control charts);
 - detection of out of control situations.

2 Normative references

There are no normative references in this document.

3 Terms and definitions, and symbols and abbreviated terms

3.1 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <http://www.electropedia.org/>

3.2 Symbols and abbreviated terms

Symbols used in this document are identical to the symbols used in ISO 22514-2 and ISO 7870-2:

C_p	process capability index
C_{pk}	minimum process capability index
C_{pkU}	upper process capability index
C_{pkL}	lower process capability index
U_{CL}	upper control limit
L_{CL}	lower control limit
m	number of subgroups
n	sample size of each subgroup
P_m	machine performance index
P_{mk}	minimum machine performance index
P_{mkU}	upper machine performance index
P_{mkL}	lower machine performance index
P_p	process performance index
P_{pk}	minimum process performance index
P_{pkU}	upper process performance index
P_{pkL}	lower process performance index ISO/TR 11462-3:2020 https://standards.iteh.ai/catalog/standards/iso/9ae32517-4789-4df7-8e69-4b5f7cbf25a6/iso-tr-11462-3-2020
T	Centreline (target value) for the respective characteristic in the control charts
U	upper specification limit
L	lower specification limit
U_{tr}	upper specification limit, transformed values
L_{tr}	lower specification limit, transformed values

Abbreviated terms:

SPC statistical process control

4 Overview of the test examples

See [Table 1](#) for an overview of the test examples.

Table 1 — Overview of test examples

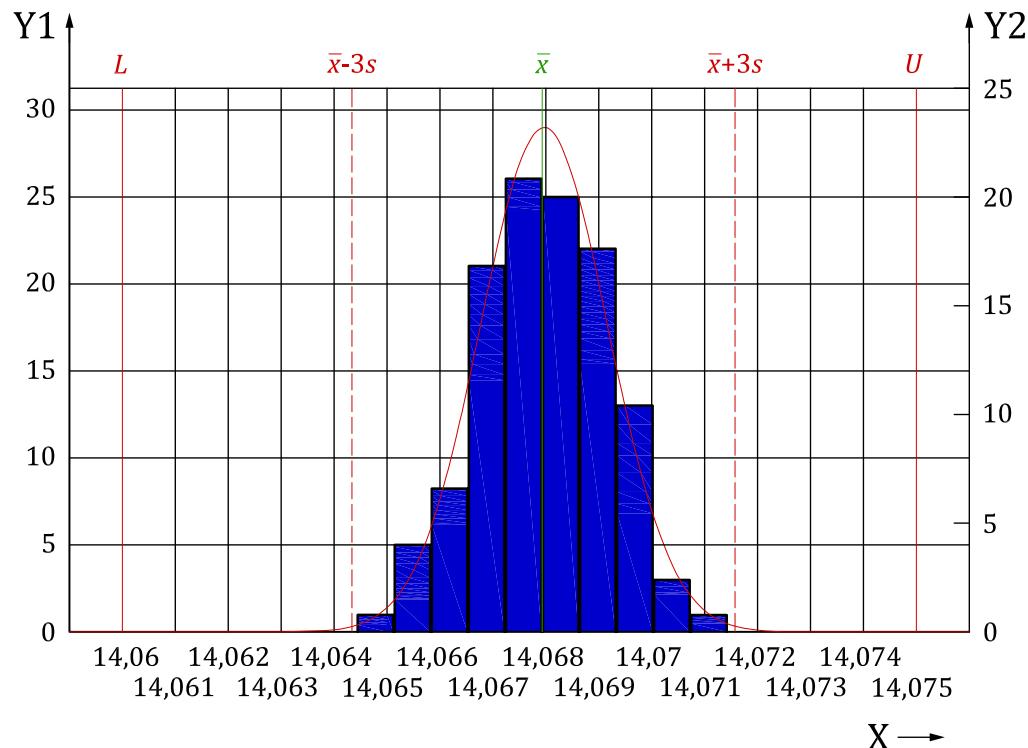
Test data set number	Subclause	Distribution model	Resulting distribution	Decimal points	Total sample size	Subgroup sample size	Description of data set
1	5.1	A1	normal	4	125	5	Data follows a normal distribution with no outliers
2	5.2	A2	Weibull	3	600	3	Correct calculations for a sample following a Weibull distribution
3	5.3	B	non-normal	2	1 000	5	Normal distribution with time dependent shift of mean
4	5.4	C1	normal	2	1 000	5	Location: random normally distributed; dispersion: constant
5	5.5	C2	non-normal	2	1 000	5	Location: random non-normally distributed; dispersion: constant; resulting distribution: non-normal
6	5.6	C3	non-normal	2	600	6	Capability indices for trend production (tool wear)
7	5.7	C4	non-normal	2	500	5	Capability indices for fix tooling (tool change)
8	5.8	D	non-normal	3	500	5	Systematic and random changes in location and dispersion - non-normal
9	5.9	A2	Rayleigh	3	500	5	Correct calculations for a sample following a Rayleigh distribution
10	5.10	A2	Weibull	0	200	5	Correct calculations for a sample following a Weibull distribution
11	5.11	C2	normal	1	30	(10)	ISO 22514-8 capability of multi-state production processes

NOTE

- The decision which distribution model fits the data and its use is up to the statistical expert. Within this document distribution models for each example are therefore assumed. The procedure to select a statistical distribution is not part of this document.
- According to ISO 22514-2 the calculation method $d = 5$ for the dispersion is not suited for non-normal distributions. It is calculated and given in this document even for non-normal distributions for the purpose of validating the implementation of the calculation method of $d = 5$.
- The resulting distributions for test 2, 9 and 10 are pre-selected models and with no means the "best natural" resulting distribution models for the same reason no goodness of fit statistics are given, knowing they will lead to reject H_0 for the pre-selected distribution models.
- Two more decimal places for sample statistics and control limits than digits of the input values. Resulting values are rounded (ISO/IEC/IEEE 60559, rounded-to-the-nearest).
- Capability index are always given with 2 digits (rounded).

- Control limits were calculated using all values in the test data set.
- All control limits were calculated using tabulated correction factors in ISO 7870-2. Using the exact quantiles of the corresponding distribution functions instead can lead to a deviation in the results <0,1 %.
- The centrelines for the control charts were chosen according to the respective statistics given by ISO 7870-2:2013, 6.1 to 6.3
- The histogram plot is not part of the validation, since the procedure is not specified in ISO 7870 series nor in ISO 22514 series. Histograms are for visualization purposes only.
- No units are given, no unit conversion has to be done.
- Time-dependent distribution models A-D are specified in ISO 22514-2.
- Internally a precision of 15 digits is used, when already calculated values are used again in further calculations.
- If the data are not normal distributed an individual chart and a MR chart cannot be used.

5 Reference data sets description and evaluation

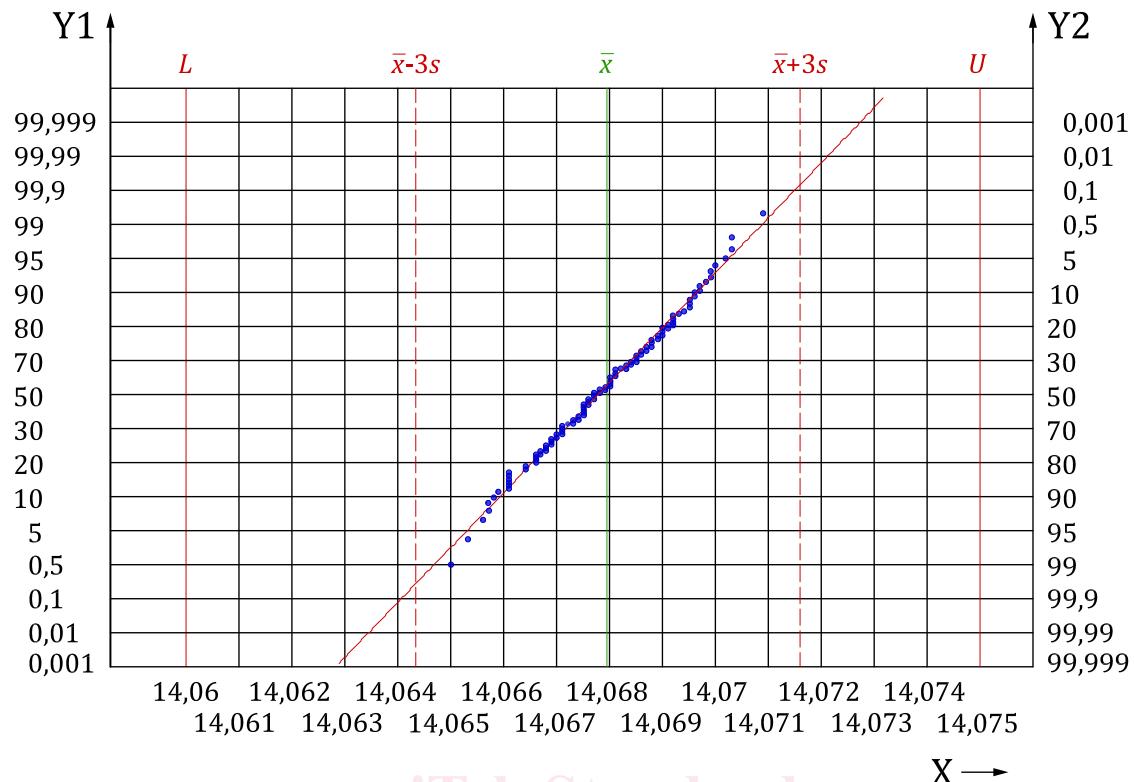

5.1 Test data set 1

5.1.1 Test data set 1 information

This set of test data is taken from a process following a normal distribution and is for checking the accuracy of calculation for control limits, sample statistics and process capabilities. A description of test data set 1 is given in [Table 2](#). [Figure 1](#) shows a histogram and [Figure 2](#) a probability plot of the test data set 1 with the purpose of data visualization.

Table 2 — Description of test data set 1

Description of data input			
Distribution model	A1	Resulting distribution	Normal
Data set	Annex A, Table A.1	decimal points	4
Total sample size	125	U	14,075
Size of subgroups	5	L	14,060


Key

X value

Y1 absolute frequency

Y2 relative frequency in %

iTeh Standards<https://standards.iteh.ai>**Document Preview****Figure 1 — Histogram of test data set 1**[ISO/TR 11462-3:2020](https://standards.iteh.ai/catalog/standards/iso/9ae32517-4789-4df7-8e69-4b5f7cbf25a6/iso-tr-11462-3-2020)<https://standards.iteh.ai/catalog/standards/iso/9ae32517-4789-4df7-8e69-4b5f7cbf25a6/iso-tr-11462-3-2020>

Key

X value
Y1 probability in %
Y2 1-probability in %

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

Figure 2 — Probability plot of test data set 1

<https://standards.iteh.ai/catalog/standards/iso/9ae32517-4789-4df7-8e69-4b5f7cbf25a6/iso-tr-11462-3-2020>
NOTE The width of the class intervals is 0,000 7.

The class interval with the highest frequency of values is from 14,067 95 to 14,068 02.

The density plot is based on the assumption of normality and estimated parameters $l = 1$, $d = 5$.

5.1.2 Test data set 1 results

5.1.2.1 List of sample statistics

[Table 3](#) lists all sample statistics which are necessary to calculate the target values and control limits for the control charts described in ISO 7870-2 as well as the estimators for location and dispersion given in ISO 22514-2 for the calculation of the process capability indices.

Table 3 — List of sample statistics for test data set 1

Statistic	Value	Reference
Location		
\bar{x} ($l = 1$)	14,067 958	ISO 22514-2:2017, Formula (11)
\tilde{x} ($l = 2$)	14,068 000	ISO 22514-2:2017, Formula (12)
$\bar{\bar{x}}$ ($l = 3$)	14,067 958	ISO 22514-2:2017, Formula (13)
$\bar{\bar{\bar{x}}}$ ($l = 4$)	14,067 828	ISO 22514-2:2017, Formula (14)

Table 3 (continued)

Statistic	Value	Reference
Dispersion		
$\hat{\Delta}$ ($d = 1$)	0,007 240 (normal distribution)	ISO 22514-2:2017: Formula (15)
$\hat{\sigma}$ ($d = 2$)	0,001 187	ISO 22514-2:2017, Formula (16)
$\hat{\sigma}$ ($d = 3$)	0,001 200	ISO 22514-2:2017, Formula (17)
$\hat{\sigma}$ ($d = 4$)	0,001 180	ISO 22514-2:2017, Formula (18)
$\hat{\sigma}$ ($d = 5$)	0,001 207	ISO 22514-2:2017, Formula (19)
\bar{s}	0,001 128	ISO 7870-2:2013, 3.2
R	0,005 900	ISO 7870-2:2013, 3.2
\bar{R}	0,002 744	ISO 7870-2:2013, 3.2
\bar{R}_m	0,001 379	ISO 7870-2:2013, 3.2

5.1.2.2 \bar{x} chart

The \bar{x} control chart calculated according to ISO 7870-2:2013, 6.1, is shown in Figure 3.

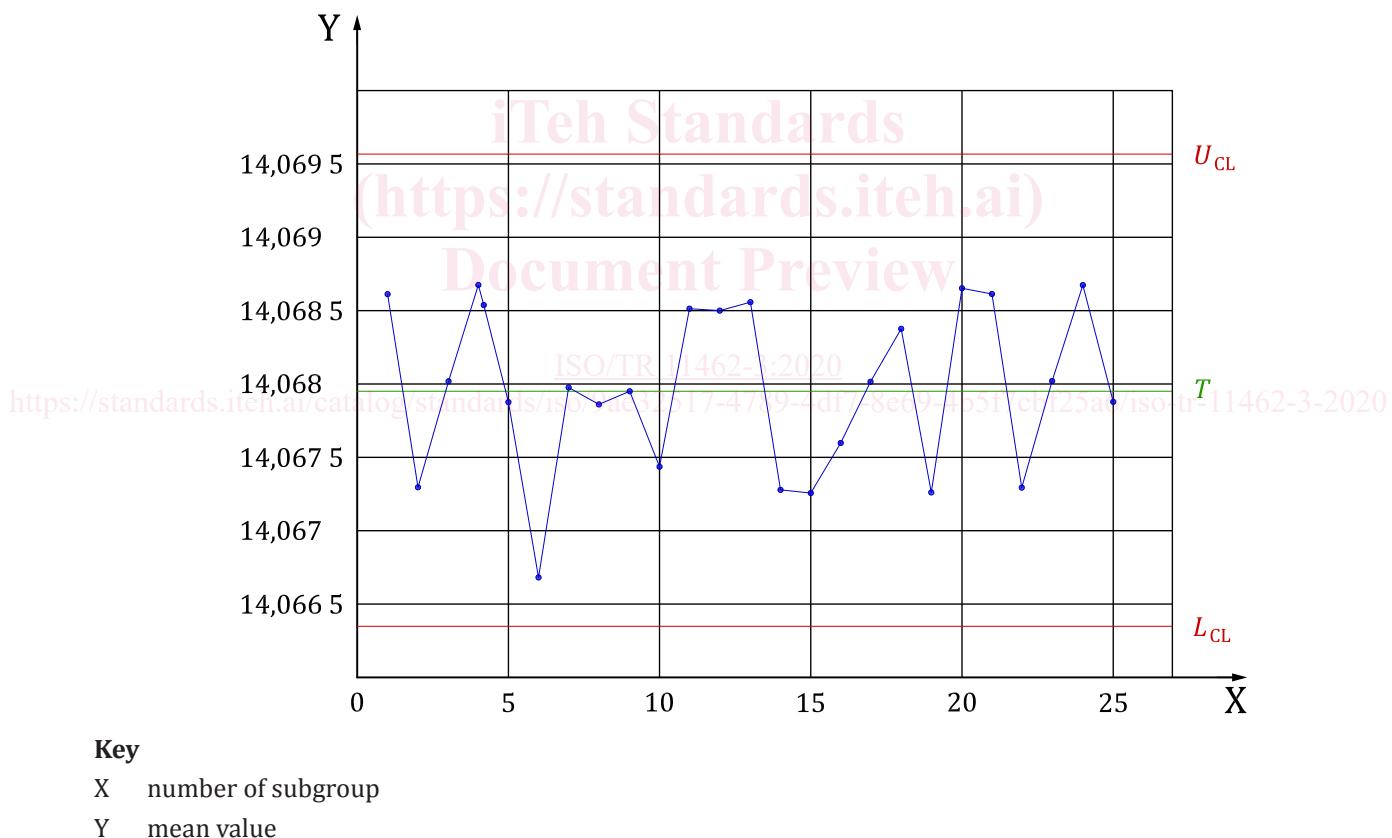
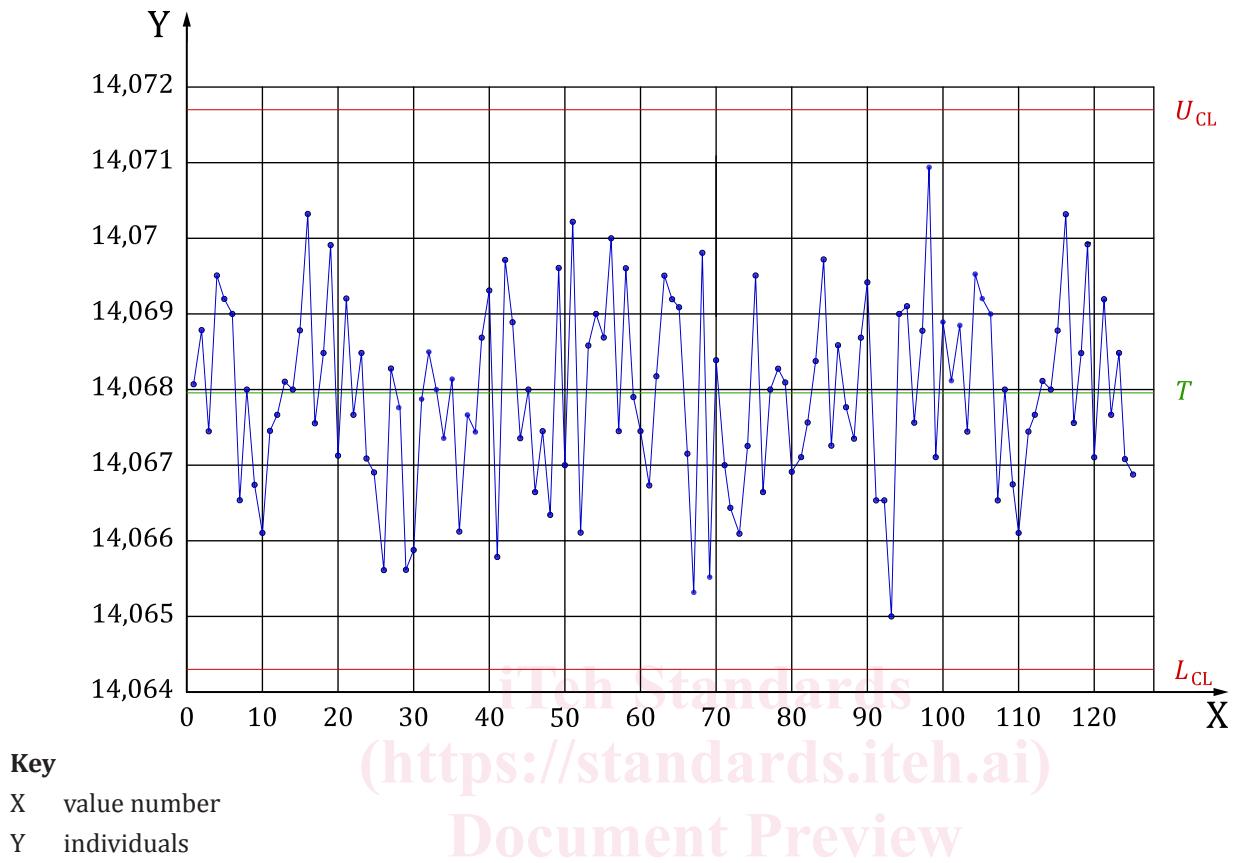


Figure 3 — Mean control chart for test data set 1


The control limits are (see ISO 7870-2:2013, Table 1, using \bar{s}):

$$L_{CL} = 14,066\ 349$$

$$U_{CL} = 14,069\ 568$$

5.1.2.3 X chart

The individuals control chart calculated according to ISO 7870-2:2013, 6.2, is shown in [Figure 4](#).

Figure 4 — Individuals control chart for test data set 1

<https://standards.iteh.ai/catalog/standards/iso/9ae32517-4789-4df7-8e69-4b5f7cbf25a6/iso-tr-11462-3-2020>

The control limits are (see ISO 7870-2:2013, Table 3):

$$L_{CL} = 14,064\ 29$$

$$U_{CL} = 14,071\ 63$$