

Designation: C 138/C 138M – 09 Highway and Transportation Officials Standard

American Association State AASHTO No.: T121

Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete¹

This standard is issued under the fixed designation C 138/C 138M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

1.1 This test method covers determination of the density (see Note 1) of freshly mixed concrete and gives formulas for calculating the yield, cement content, and air content of the concrete. Yield is defined as the volume of concrete produced from a mixture of known quantities of the component materials.

1.2The values stated in either inch-pound or SI units shall be regarded separately as standard. The SI units are shown in brackets. The values stated might not be exact equivalents; therefore each system must be used independently of the other.

1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

Note 1—Unit weight was the previous terminology used to describe the property determined by this test method, which is mass per unit volume.

1.3 The text of this test method references notes and footnotes that provide explanatory information. These notes and footnotes (excluding those in tables) shall not be considered as requirements of this test method.

2. Referenced Documents

2.1 ASTM Standards:²

C 29/C 29M Test Method for Bulk Density (Unit Weight) and Voids in Aggregate

C 31/C 31M Practice for Making and Curing Concrete Test Specimens in the Field

C 143/C 143M Test Method for Slump of Hydraulic-Cement Concrete

C 150 Specification for Portland Cement

C 172 Practice for Sampling Freshly Mixed Concrete

C 173/C 173M Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method

C 188 Test Method for Density of Hydraulic Cement

C 231 Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

3. Terminology

3.1 Symbols:

= air content (percentage of voids) in the concrete A

= actual cement content, lb/yd³ or kg/m³ C= mass of cement in the batch, lb or kg

= density (unit weight) of concrete, lb/ft³ or kg/m³

= total mass of all materials batched, lb or kg (see Note 3)

= mass of the measure filled with concrete, lb or kg

 M_m = mass of the measure, lb or kg

= relative yield

¹ This test method is under the jurisdiction of ASTM Committee C09 on Concrete and Concrete Aggregates and is the direct responsibility of Subcommittee C09.60 on

Current edition approved MarchJune 1, 2008:2009. Published March 2008. July 2009. Originally approved in 1938. Last previous edition approved in 20072008 as C 138/C 138M - 078.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

∰ C 138/C 138M – 09

T = theoretical density of the concrete computed on an airfree basis, lb/ft^3 or kg/m^3 (see Note 2)

= yield, volume of concrete produced per batch, yd³ or m³

 Y_d = volume of concrete which the batch was designed to produce, yd³ or m³

 Y_f = volume of concrete produced per batch, ft ³

V = total absolute volume of the component ingredients in the batch, ft³ or m³

 V_m = volume of the measure, ft³ or m³

Note 2—The theoretical density is, customarily, a laboratory determination, the value for which is assumed to remain constant for all batches made using identical component ingredients and proportions. It is calculated from the following equation:

$$T = M/V \tag{1}$$

The absolute volume of each ingredient in cubic feet is equal to the quotient of the mass of that ingredient divided by the product of its specific gravity times 62.4. The absolute volume of each ingredient in cubic metres is equal to the mass of the ingredient in kilograms divided by 1000 times its specific gravity. For the aggregate components, the bulk specific gravity and mass should be based on the saturated, surface-dry condition. For cement, the actual specific gravity should be determined by Test Method C 188. A value of 3.15 may be used for cements manufactured to meet the requirements of Specification C 150.

Note 3—The total mass of all materials batched is the sum of the masses of the cement, the fine aggregate in the condition used, the coarse aggregate in the condition used, the mixing water added to the batch, and any other solid or liquid materials used.

4. Apparatus

- 4.1 *Balance*—A balance or scale accurate to 0.1 lb [45 g] or to within 0.3 % of the test load, whichever is greater, at any point within the range of use. The range of use shall be considered to extend from the mass of the measure empty to the mass of the measure plus its contents at 160 lb/ft³ [2600 kg/m ³].
- 4.2 Tamping Rod—A round, straight steel rod, $\frac{1}{8}$ in. [16 mm] in diameter and approximately 24 in. [600 mm] in length, having the tamping end rounded to a hemispherical tip the diameter of which is $\frac{1}{8}$ in. —A round, straight steel rod, with a $\frac{1}{8}$ in. [16 mm] $\pm \frac{1}{16}$ in. [2 mm] diameter. The length of the tamping rod shall be at least 4 in. [100 mm] greater than the depth of the measure in which rodding is being performed, but not greater than 24 in. [600 mm] in overall length (See Note 4). The length tolerance for the tamping rod shall be $\pm \frac{1}{8}$ in. [4 mm]. The rod shall have the tamping end or both ends rounded to a hemispherical tip of the same diameter as the rod.

Note 4—A rod length of 16 in. [400 mm] to 24 in. [600 mm] meets the requirements of the following: Practice C 31/C 31M, Test Method C 138/C 138M, Test Method C 143/C 143M, Test Method C 173/C 173M and Test Method C 231.

- 4.3 Internal Vibrator—Internal vibrators may have rigid or flexible shafts, preferably powered by electric motors. The frequency of vibration shall be 7000 vibrations per minute or greater while in use. The outside diameter or the side dimension of the vibrating element shall be at least 0.75 in. [19 mm] and not greater than 1.50 in. [38 mm]. The length of the shaft shall be at least 24 in. [600 mm].
- 4.4 Measure—A cylindrical container made of steel or other suitable metal (see Note 4Note 5). The minimum capacity of the measure shall conform to the requirements of Table 1 based on the nominal size of aggregate in the concrete to be tested. All measures, except for measuring bowls of air meters which are also used for Test Method C 138/C 138M tests, shall conform to the requirements of Test Method C 29/C 29M. When measuring bowls of air meters are used, they shall conform to the requirements of Test Method C 231, and shall be calibrated for volume as described in Test Method C 29/C 29M. The top rim of the air meter bowls shall be smooth and plane within 0.01 in. [0.3 mm] (see Note 5Note 6).

Note 4—The 5—The metal should not be readily subject to attack by cement paste. However, reactive materials such as aluminum alloys may be used in instances where as a consequence of an initial reaction, a surface film is rapidly formed which protects the metal against further corrosion.

- Notes—The 6—The top rim is satisfactorily plane if a 0.01-in. [0.3-mm] feeler gage cannot be inserted between the rim and a piece of ½-in. [6-mm] or thicker plate glass laid over the top of the measure.
- 4.5 Strike-Off Plate—A flat rectangular metal plate at least ¼ in. [6 mm] thick or a glass or acrylic plate at least ½ in. [12 mm] thick with a length and width at least 2 in. [50 mm] greater than the diameter of the measure with which it is to be used. The edges of the plate shall be straight and smooth within a tolerance of ¼ in. [2 mm].

TABLE 1 Capacity of Measures

Nominal Maximum Size of Coarse Aggregate		Capacity of Measure ^A	
in.	mm	ft ³	L
1	25.0	0.2	6
11/2	37.5	0.4	11
2	50	0.5	14
3	75	1.0	28
41/2	112	2.5	70
6	150	3.5	100

^A The indicated size of measure shall be used to test concrete containing aggregates of a nominal maximum size equal to or smaller than that listed. The actual volume of the measure shall be at least 95 % of the nominal volume listed.