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Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the
ETSI Web server (https:/ipr.etsi.org/).

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including I PR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETS| Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM 2M ™ |ogo is atrademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM ® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Securing Artificial Intelligence (SAl).

Modal verbs terminology

In the present document “should", "should not", "may", "need not", "will", "will not", "can" and "cannot" areto be
interpreted as described in clause 3.2 of the ET S| Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Introduction

Security testing of Al aims at identifying vulnerabilitiesin Al models. On the one hand, security testing of Al has some
commonalities with security testing of traditional software systems. On the other hand, the functioning of Al andin
particular ML poses new challenges and requires different approaches for several reasons:

e  Thereare significant differences between symbolic Al, sub symbolic Al, i.e. ML, versus traditional software
systems that have strong implications on Al and ML security and on how to test their security properties.

. Non-determinism: Al-based systems can evolve at runtime (self-learning systems), and thus, security
properties can degrade at runtime, too. If faced with the same input at different times, self-learning Al-based
systems can provide different predictions.

. Test oracle problem: assigning atest verdict is different and more difficult for Al-based systems since not all
expected results are known a priori.
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. Data-driven algorithms: in contrast to traditional systems, (training) data forms the behaviour of sub symbolic
Al, meaning security testing should be extended from the Al component to the data used for training or
continuous learning of a system.

Testing consists of several activities that include test planning and control, test design, test implementation, test
execution and test evaluation. The present document covers the testing activities test design, test execution and test
evaluation. For that purpose, the present document introduces methods and metrics to design test cases (see clause 4), to
measure the progress (see clause 5) and to evaluate test cases (see clause 6).

The present document addresses security testing approaches for Al, security test oracles for Al, and definition of test
adequacy criteriafor security testing of Al. Techniques of each of these topics are applied together to security test a

ML component. Security testing approaches are used to generate test cases that are executed against the ML component.
Security test oracles enable to calculate atest verdict to determine if atest case has passed, that is, no vulnerability has
been detected, or failed, that is avulnerability has been identified. Test adequacy criteria are used to determine the
entire progress and can be employed to specify a stop condition for security testing.

The security testing approaches addressed by the present document are not solely related to security but to robustness as
well. Issues with the robustness of ML components can result in both security and safety issues. Security issues of aML
component can enable an adversary to achieve a violation of one of the security properties, i.e. confidentiality, integrity,
and availability. Safety issues of aML component might endanger the environment in which the ML component and the
system it is part of is operating. Security issues might also lead to safety issues when, for instance, the availability or
integrity of safety measuresis affected. Testing of robustness of ML components related to safety-issuesin the
Automotive domain has been discussed, for instance, in[i.1].
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1 Scope

The present document identifies methods and techniques that are appropriate for security testing of ML-based
components. Security testing of Al does not end at the component level. Asfor testing of traditional software, the
integration with other components of a system needs to be tested as well. However, integration testing is not the subject
of the present document.

The present document addresses:
. security testing approaches for Al;
. security test oracles for Al;
e  definition of test adequacy criteria for security testing of Al.

Techniques of each of these topics should be applied together to security test of aML component. Security testing
approaches are used to generate test cases that are executed against the ML component. Security test oracles enable to
calculate atest verdict to determine if atest case has passed, that is, no vulnerability has been detected, or failed, that is
avulnerability has been identified. Test adequacy criteria are used to determine the entire progress and can be employed
to specify a stop condition for security testing.

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.
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3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:
adversarial example: carefully crafted input which mislead a model to give an incorrect prediction
perturbation: semantically meaningless modification of an input
EXAMPLE: Perturbation can have the form of noise added to an image.
substitute model: model created by an adversary to craft transferable adversarial examples

NOTE 1: The substitute model performs the same task as the target model but may use a different ML technique or
adifferent dataset.

NOTE 2: The terms surrogate model and substitute model are used synonymously.
surrogate model: See substitute model.
target label: label that an adversary wants the target model to output if fed with an adversarial example
target model: model an adversary wants to make wrong predictions

transferable adver sarial example; adversarial example which is crafted for one model but can also fool a different
model with a high probability

true label: correct label for an input from the ground truth

3.2 Symbols

For the purposes of the present document, the following symbols apply:

Lo Pseudo distance (number of non-zero elements)

L, Euclidean distance

Lo Chebyshev distance

Liow Flow field function

L, Distance that needs to be specified by the parameter p with p € {0,2, 0}

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

Al Artificial Intelligence

CLEVER Cross Lipschitz Extreme Vaue for nEtwork Robustness
DSA Distance-based Surprise Adequacy

FAB Fast Adaptive Boundary attack

FGSM Fast Gradient Sign Method

JSMA Jacobian-based Saliency Map Attack

L-BFGS computer-memory-Limited approximation of the Broyden-Fletcher-Goldfarb-Shanno algorithm
LSA Likelihood-based Surprise Adequacy

ML Machine Learning

NaN Not a Number

PGD Projected Gradient Descent

RelL U Rectified Linear Unit

SAI Securing Artificial Intelligence

SPSA Simultaneous Perturbation Stochastic Approximation
TISMA Taylor ISMA

WJISMA Weighted ISMA
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Z00 Zeroth Order Optimization-based attacks
4 Security testing techniques
4.1 Introduction

Security testing techniques are used for designing test cases that are later on executed against an ML component. Such
test cases consist of the input data that is fed to the ML component to identify a vulnerability, e.g. a susceptibility to a
specific adversarial example. Clause 4 presents different approaches that can be employed for crafting such inputs. The
presented testing approaches can be divided into those that have been developed for traditional software and can be
employed for security testing of ML components as well, and those that are specific to ML. Furthermore, not al of them
are security-specific but can be more versatile with respect to the quality characteristics in question.

NOTE: Itisnecessary to ensure that the system is not designed to recognise the adversarial examples used in a
test environment and to run in such away that the test is passed by bypassing normal operation.

4.2 Mutation testing

4.2.1 Coverage-guided fuzzing

Coverage-guided fuzzing is atechnique that has been established for traditional software systems. For such systems,
code coverage has been extensively used as coverage metrics together with genetic algorithms, mostly using binary
mutation without protocol models, asin American Fuzzy Lop [i.2] and libFuzzer [i.3]. Odena et a. [i.4] transferred this
approach to neural networks of different architectures. Instead of random binary mutation, they use specific mutators
for images and text. For images, their approach mutates existing pictures by adding white noise either to the extent of a
user-configurable variance or by a user-configurable L., norm. As distance metric the approximate nearest nei ghbour
that is greater than a given threshold is used and assume a higher coverage is the distance to the nearest neighbour is
above this threshold.

NOTE: L, norm or Chebyshev distance simply takes the (mathematically absolutely) largest component of a
vector.

4.2.2 Metamorphic testing

Metamorphic testing [i.5] is a testing approach that relies on metamorphic relations to identify test inputs for which the
relationships between their outputs are known or could be identified, for instance using statistical methods. Based on
existing, passing test cases, new test cases can be derived using the metamorphic relations. Hence, metamorphic testing
requires the identification of metamorphic relations as afirst step. This can be a challenging task for complex scenarios
where relationships between different inputs and output are not obvious. The simplest example of a metamorphic
relation is for the sine function where two metamorphic relations can be derived from the periodicity of the sine
function:

sinx = sin(x + 2m) Q)
and
[sin x| = |sin(x + )| )

Metamorphic relations can be more complex than simple equality and the absolute value and can involve any
mathematical function. They are usually specific to the problem domain.

4.3 Differential testing

Differential testing [i.6] is atesting technique developed for traditional software that uses another system as a reference
system to identify deviations of the system under test when different behaviours of both systems can be observed. Test
cases are generated randomly, and test cases that result in different behaviours between the system under test and the
reference system are considered to have revealed a bug and are retained as regression test and for debugging purposes.
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