
Safety of toys —

Part 6:

**Certain phthalate esters in toys and
children's products**

Sécurité des jouets —

iTEH Standards

*Partie 6: Dosage de certains esters de phtalates dans les jouets et
produits pour enfants*

[**\(https://standards.iteh.ai\)**](https://standards.iteh.ai)
Document Preview

[ISO 8124-6:2018](#)

<https://standards.iteh.ai/catalog/standards/iso/1eeea8cd-bdd6-4756-973e-3c868dcd06d6/iso-8124-6-2018>

Reference number
ISO 8124-6:2018(E)

© ISO 2018

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 8124-6:2018](#)

<https://standards.iteh.ai/catalog/standards/iso/1eeea8cd-bdd6-4756-973e-3c868dcd06d6/iso-8124-6-2018>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

Page

Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Principle	2
5 Reagents	2
6 Apparatus	3
7 Selection of test portion	4
8 Procedure	5
8.1 Sample weighing	5
8.2 Extraction	5
8.2.1 Options for extraction method	5
8.2.2 Method A	5
8.2.3 Method B	5
8.2.4 Method C	5
8.3 Sample solution for analysis	6
8.3.1 General	6
8.3.2 Quantification by external standard (ES) calibration	6
8.3.3 Quantification by IS calibration	6
8.4 Determination	7
8.4.1 GC-MS conditions	7
8.4.2 Identification	7
8.4.3 Calibration	8
9 Calculation	9
9.1 External standard (ES) calculation	9
9.2 Internal standard (IS) calculation	10
10 Quality control	10
10.1 Limit of quantification (LOQ)	10
10.2 Method blank	10
10.3 Recovery	10
10.4 Calibration check	10
11 Precision	11
12 Test report	11
Annex A (normative) Phthalate esters	12
Annex B (informative) Precision of the method	13
Annex C (informative) Soxhlet extractor and solvent extractor	17
Annex D (informative) Composite test	19
Annex E (normative) Ultrasonic bath performance check	22
Annex F (informative) Example of GC-MS conditions	25
Annex G (informative) Background and rationale	29
Bibliography	32

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 181, *Safety of toys*.

This second edition of ISO 8124-6 cancels and replaces the first edition (ISO 8124-6:2014), which has been technically revised.

The main changes to the previous edition are as follows:

- addition of di-*iso*-butyl phthalate (DIBP) in [Clause 1](#) and [Annex A](#);
- addition of liquid material in [Clause 1](#), [Clause 7](#) and [Annex A](#);
- addition of a new [Clause 2](#), *Normative references*, and renumbering of subsequent clauses;
- addition of a new method C, “ultrasonic bath method”;
- update and reorganization of the inter-laboratory collaborative trial test data in [Annex B](#);
- addition of a new [Annex E](#), *Ultrasonic bath performance check*, and renumbering of all annexes.

A list of all parts in the ISO 8124 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

This document is largely based upon the existing Chinese national standard GB/T 22048-2008. Relevant standards of some countries and regions are referred to as well.

This document does not set out limits for phthalate esters. It is intended to be used as a method standard in conformity assessment. The user of this document is therefore advised to be aware of relevant national requirements.

In some countries phthalate ester requirements for toys are also applicable to children's products and children's product materials are generally similar to those of toys. This document, whose scope covers various materials, is therefore applicable to both toys and children's products.

[Annex A](#) and [Annex E](#) are normative, whereas [Annex B](#), [Annex C](#), [Annex D](#), [Annex F](#) and [Annex G](#) are for information only. However, they are crucial and helpful for the correct interpretation of this document.

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 8124-6:2018](#)

<https://standards.iteh.ai/catalog/standards/iso/1eeea8cd-bdd6-4756-973e-3c868dcd06d6/iso-8124-6-2018>

Safety of toys —

Part 6: Certain phthalate esters in toys and children's products

WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices.

IMPORTANT — It is absolutely essential that tests conducted in accordance with this document be carried out by suitably trained staff.

1 Scope

This document specifies a method for the determination of di-*iso*-butyl phthalate (DIBP), di-*n*-butyl phthalate (DBP), benzylbutyl phthalate (BBP), bis-(2-ethylhexyl) phthalate (DEHP), di-*n*-octyl phthalate (DNOP), di-*iso*-nonylphthalate (DINP) and di-*iso*-decyl phthalate (DIDP) (as specified in [Annex A](#)) in toys and children's products.

This document is applicable to toys and children's products which are made of plastics, textiles, coatings and liquids. This document has been validated for polyvinylchloride (PVC) plastics, polyurethane (PU) plastics and some representative paint coatings (see [Annex B](#)). It might also be applicable to other phthalate esters and other product materials provided that adequate validation is demonstrated.

Document Preview

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 2758, *Paper — Determination of bursting strength*

ISO 8124-1:2018, *Safety of toys — Part 1: Safety aspects related to mechanical and physical properties*

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <http://www.electropedia.org/>

3.1

laboratory sample

toy or children's product in the form in which it is marketed or intended to be marketed

3.2

base material

material upon which coatings may be formed or deposited

[SOURCE: ISO 8124-3:2010, 3.1]

3.3

coating

all layers of material formed or deposited on the base material of toys or children's products, including paints, varnishes, lacquers, inks, polymers or other substances of a similar nature, whether they contain metallic particles or not, no matter how they have been applied to the toy or children's product and which can be removed by scraping with a sharp blade

[SOURCE: ISO 8124-3:2010, 3.2, modified — 'toy' has been replaced with 'toy or children's product']

3.4

scraping

mechanical process for removal of coatings down to the base material

[SOURCE: ISO 8124-3:2010, 3.6]

3.5

test portion

portion of homogeneous material taken from a corresponding part of the laboratory sample for analysis

3.6

composite test portion

mixed test portion formed by physically mixing several test portions of similar materials

Note 1 to entry: This term excludes the compositing of dissimilar materials; for example, compositing textiles and paint coatings are not permitted.

3.7

composite test

test performed on the composite test portion

3.8

limit of quantification

LOQ

lowest amount of the analyte in the sample that can be quantitatively determined with defined precision under the stated experimental conditions

<https://standards.iteh.ai/catalog/standards/iso/1eeea8cd-bdd6-4756-973e-3c868dcd06d6/iso-8124-6-2018>

3.9

method blank

aliquot of solvents that is treated exactly as a sample, including exposure to glassware, apparatus and conditions used for a particular test, but with no added sample

Note 1 to entry: Method blank data are used to assess contamination from the laboratory environment.

iTeh Standards (<https://standards.iteh.ai>)

Document Preview

4 Principle

The test portion of a toy or children's product is extracted through a Soxhlet extractor, solvent extractor (see [Annex C](#)) or ultrasonic bath with dichloromethane. Phthalate esters in the extract are determined qualitatively and quantitatively by gas chromatography-mass spectrometry (GC-MS).

5 Reagents

5.1 Dichloromethane, CAS No. 75-09-2, analytical grade or higher, free of phthalate esters.

5.2 Phthalate reference substances, DIBP, DBP, BBP, DEHP, DNOP, DINP and DIDP (as specified in [Annex A](#)), minimum of 95 % purity.

5.3 Stock solution, 100 mg/l of DIBP, DBP, BBP, DEHP, DNOP each, and 500 mg/l of DINP, DIDP each in dichloromethane ([5.1](#)).

5.4 External standard (ES) calibration solutions

A series of calibration standard solutions (of at least five equidistant calibrations in the range of 0,4 mg/l to 10 mg/l for DIBP, DBP, BBP, DEHP and DNOP, 2 mg/l to 50 mg/l for DINP and DIDP) is prepared by transferring 0,2 ml to 5 ml of the stock solution (5.3) to a 50 ml volumetric flask and making up to the mark with dichloromethane.

Calibration standard solutions should be properly stored at 4 °C to prevent change of concentration. It is recommended that the solution be prepared at least monthly.

5.5 Internal standard (IS) calibration solutions

5.5.1 Internal reference substances

Benzyl benzoate (BB, CAS No. 120-51-4) or di-*n*-amyl phthalate (DAP, CAS No. 131-18-0) (also known as di-*n*-pentyl phthalate (DPP)), minimum of 95 % purity.

The internal reference substances should not be present in the test portion matrix. Other compounds, such as isotopically labelled phthalates, can be used as alternative internal reference substances.

5.5.2 Internal stock solution

250 mg/l of BB, DAP or others, in dichloromethane.

IS solutions should be properly stored at 4 °C to prevent change of concentration. It is recommended that these solutions be prepared at least every three months.

5.5.3 Internal standard calibration solutions

A series of calibration standard solutions (of at least five equidistant calibrations in the range of 0,4 mg/l to 10 mg/l for DIBP, DBP, BBP, DEHP and DNOP, 2 mg/l to 50 mg/l for DINP and DIDP) is prepared by transferring 0,2 ml to 5 ml of the stock solution (5.3) to a 50 ml volumetric flask and adding 2 ml of the IS stock solution (5.5.2) before making up to the mark with dichloromethane. Each of the calibration standards contains 10 mg/l IS.

<https://standards.iteh.ai>

IS calibration solutions should be properly stored at 4 °C to prevent change of concentration. It is recommended that these solutions be prepared at least monthly.

6 Apparatus

Phthalate esters are common contaminants which can affect the test result even at a low level of concentration. In order to prevent interference and cross-contamination, any type of plastic apparatus that could affect the analysis should be avoided, and glassware and equipment should be scrupulously cleaned before use.

6.1 Normal laboratory glassware.

6.2 Gas chromatography-mass spectrometer (GC-MS), with a capillary column coupled to a mass spectrometric detector (electron ionization, EI) used for the analysis. See 8.4.1.

6.3 Soxhlet extractor, see Figure C.1.

6.4 Solvent extractor, see Figure C.2.

6.5 Extraction thimble, made of cellulose.

6.6 Cotton wool, for extraction thimble.

6.7 Analytical balance, capable of measuring to an accuracy of 0,001 g.

6.8 Concentration apparatus, for example, a rotary evaporator.

6.9 Solid phase extraction (SPE) cartridge, 1 000 mg silica gel/6 ml tubes, or equivalent.

6.10 Volumetric flasks, of 5 ml, 10 ml, 25 ml, 50 ml and 100 ml nominal capacity.

6.11 Pipettes, of 0,5 ml, 1 ml, 2 ml, 5 ml and 10 ml nominal capacity.

6.12 Polytetrafluoroethylene (PTFE) membrane filter, of pore size 0,45 µm.

6.13 Ultrasonic bath, thermostatically controlled internally or externally, with the effective ultrasonic power intensity ranging from 0,25 W/cm² to 2,0 W/cm². The performance check of the ultrasonic bath is performed as specified in [Annex E](#).

EXAMPLE An ultrasonic bath with a total power consumption of 1 200 W, including 200 W of effective ultrasonic power and 1 000 W of heating power, with an internal bath base area of 400 cm², will have an effective ultrasonic power intensity of 0,50 W/cm² (=200 W/400 cm²).

6.14 Ultrasonic basket, usually supplied together with the ultrasonic bath. When hung on the ultrasonic bath, its lowest level is approximately 3 cm to 5 cm above the bottom of the bath.

6.15 Airtight glass reaction vessel, pressure resistant to at least 0,2 MPa and with a gross volume of 2 to 10 times the volume of dichloromethane. The reaction vessel should be tightly closed to prevent the evaporation of dichloromethane during ultrasonic extraction.

6.16 Centrifuge, capable of centrifuging at (5 000 ± 500) g.

<https://standards.iteh.ai/catalog/standards/iso/1eee8cd-bdd6-4756-973e-3c868dcd06d6/iso-8124-6-2018>

7 Selection of test portion

For materials in solid form, use a scalpel or other appropriate cutting instrument to cut a representative portion from the laboratory sample into small pieces. For coatings, remove each different coating from the laboratory sample by scraping. Extra care shall be taken to minimize the inclusion of the base material. Each piece shall, in the uncompressed condition, have no dimension greater than 5 mm and be mixed uniformly.

For materials in liquid form, use appropriate apparatus, such as a pipette or syringe, to transfer a representative portion from the laboratory sample. Extra care shall be taken to minimize cross contamination.

A test portion of less than 10 mg from a single laboratory sample shall not be tested.

The requirement does not preclude the taking of reference portions from toy or children's product materials in a different form, provided that they are representative of the relevant material specified above and the substrate upon which they are deposited.

A composite test can be used for screening. See [Annex D](#).

8 Procedure

8.1 Sample weighing

Weigh, to the nearest 1 mg, approximately 1 g of the test portion into an extraction thimble (6.5) or reaction vessel (6.15). If 1 g test portion cannot be obtained from a single laboratory sample, sample as much as possible from more than one laboratory sample, but 0,1 g should be a minimum test portion.

8.2 Extraction

8.2.1 Options for extraction method

Three options for extraction procedures, Method A (8.2.2), Method B (8.2.3) and Method C (8.2.4), are described. Laboratories can select the most suitable one at their discretion.

8.2.2 Method A

Place the thimble with test portion into a 250-ml Soxhlet extractor (6.3). In order to prevent the sample from floating, add cotton wool (6.6) to the top of the thimble.

Add 120 ml of dichloromethane (5.1) into the 250-ml flask. Reflux for 6 h with no less than four reflux cycles per hour.

The volume of the dichloromethane may be adjusted according to the Soxhlet extractor.

After cooling, reduce the volume of the dichloromethane to about 10 ml using a suitable concentration apparatus (6.8), taking care to avoid reduction to dryness.

When using a rotary evaporator, it is recommended that the temperature of the water bath is in the range of 40 °C to 50 °C, with a constant pressure of between 30 kPa to 45 kPa.

During the refluxing and concentration steps, careful temperature control is necessary in order to avoid loss of phthalate esters.

<https://standards.iteh.ai/catalog/standards/iso/1eeea8cd-bdd6-4756-973e-3c868dcd06d6/iso-8124-6-2018>

8.2.3 Method B

Place the thimble with test portion into the solvent extractor (6.4). In order to prevent the sample from floating, add cotton wool (6.6) to the top of the thimble.

Add 80 ml of dichloromethane (5.1) into the receiver. Immerse for 1,5 h at about 80 °C and reflux for 1,5 h. Finally, concentrate the dichloromethane extract to about 10 ml.

The volume of the dichloromethane may be adjusted according to the solvent extractor.

During the refluxing and concentration steps, careful temperature control is necessary in order to avoid loss of phthalate esters.

8.2.4 Method C

8.2.4.1 For material in solid form

Add 25 ml of dichloromethane to the airtight glass reaction vessel (6.15). Place the vessel in an ultrasonic bath with an initial temperature of 60 °C for 60 min.

NOTE If the material does not dissolve or swell in dichloromethane, method A (8.2.2) or method B (8.2.3) might be preferable.

The volume of the final solution may be adjusted according to the mass of tested specimen. Care should be taken not to affect the LOQ (10.1).

8.2.4.2 For material in liquid form

Add 15 ml of dichloromethane to an airtight glass reaction vessel (6.15). Place the vessel in an ultrasonic bath with an initial temperature of 60 °C for 60 min.

8.3 Sample solution for analysis

8.3.1 General

After cooling to room temperature, filter the solution, which is obtained after the test portion has been treated according to the procedure as specified in 8.2.2, 8.2.3 or 8.2.4, where appropriate, with PTFE membrane filter (6.12) for GC-MS (6.2) analysis.

Before the filtering procedure, when the extract exhibits turbidity, centrifuge at up to 5 000 g (6.16). If necessary, purify the solution with a pretreated SPE cartridge (6.9), which is pretreated with approximately 10 ml of dichloromethane before purification and discard the effluent, rinse the cartridge with 3 ml of dichloromethane three times and collect the eluate.

Two options for quantification procedures, ES calibration (8.3.2) and IS calibration (8.3.3), are described as follows. Laboratories can select the most suitable one at their discretion.

8.3.2 Quantification by external standard (ES) calibration

8.3.2.1 Method A and Method B

Transfer the extract or the eluate into a 25-ml volumetric flask and make up to the mark with dichloromethane for GC-MS analysis.

The volume of the final solution may be adjusted according to the mass of tested specimen. Care should be taken not to affect the LOQ (10.1).

8.3.2.2 Method C

[ISO 8124-6:2018](https://standards.iteh.ai/catalog/standards/iso/1eeea8cd-bdd6-4756-973e-3c868dcd06d6/iso-8124-6-2018)

8.3.2.2.1 Material in solid form

Use the extract or the eluate for GC-MS analysis.

8.3.2.2.2 Material in liquid form

Transfer the extract or the eluate into a 25-ml volumetric flask and make up to the mark with dichloromethane for GC-MS analysis.

The volume of the final solution may be adjusted according to the mass of tested specimen. Care should be taken not to affect the LOQ (10.1).

8.3.3 Quantification by IS calibration

For method A or method B, transfer the extract or the eluate and 1 ml of the IS stock solution (5.5.2) into a 25-ml volumetric flask and make up to the mark with dichloromethane. The final solution contains 10 mg/l of IS.

The volume of both IS solution and the final solution may be adjusted according to the test specimen mass and concentration. The concentration of IS in the final test solution should be the same as that of standard calibration solutions (5.5.3).