

### SLOVENSKI STANDARD SIST EN IEC 60172:2021

01-marec-2021

Nadomešča: SIST EN 60172:2015



Méthode d'essai pour la détermination de l'indice de température des fils de bobinage émaillés et enveloppés de ruban (IEC 60172:2020)1406ef53-14e6-45cb-a844-18a161315300/sist-en-iec-60172-2021

Ta slovenski standard je istoveten z: EN IEC 60172:2021

### ICS:

17.200.01Termodinamika na splošnoThermodynamics in general29.060.10ŽiceWires

SIST EN IEC 60172:2021

en



# iTeh STANDARD PREVIEW (standards.iteh.ai)

### SIST EN IEC 60172:2021

# EUROPEAN STANDARD NORME EUROPÉENNE **EUROPÄISCHE NORM**

### **EN IEC 60172**

January 2021

ICS 29.060.10

Supersedes EN 60172:2015 and all of its amendments and corrigenda (if any)

English Version

### Test procedure for the determination of the temperature index of enamelled and tape wrapped winding wires (IEC 60172:2020)

Méthode d'essai pour la détermination de l'indice de température des fils de bobinage émaillés et enveloppés de ruban (IEC 60172:2020)

Prüfverfahren zur Bestimmung des Temperaturindex von Lackdrähten und bandumwickelten Drähten (IEC 60172:2020)

This European Standard was approved by CENELEC on 2020-12-28. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. SIST EN IEC 60172

https://standards.iteh.ai/catalog/standards/sist/1406ef53-14e6-45cb-a844-

CENELEC members are the national electrotechnical committees of Austria/Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovania, Spain, Sweden, Switzerland, Turkey and the United Kingdom.



European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

### European foreword

The text of document 55/1876/FDIS, future edition 5 of IEC 60172, prepared by IEC/TC 55 "Winding wires" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 60172:2021.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2021-09-28 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2023-12-28 document have to be withdrawn

This document supersedes EN 60172:2015 and all of its amendments and corrigenda (if any).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

### **Endorsement notice**

### iTeh STANDARD PREVIEW

The text of the International Standard IEC 60172:2020 was approved by CENELEC as a European Standard without any modification. (standards.iteh.ai)

In the official version, for Bibliography <u>Herofollowing</u>, <u>notes</u> have to be added for the standards indicated: https://standards.iteh.ai/catalog/standards/sist/1406ef53-14e6-45cb-a844-

| IEC 60317 (series) |      | 1315300/sist-en-iec-60172-2021<br>Harmonized as EN 60317 (series) |
|--------------------|------|-------------------------------------------------------------------|
| IEC 60455-3-5      | NOTE | Harmonized as EN 60455-3-5                                        |
| IEC 60464-3-2      | NOTE | Harmonized as EN 60464-3-2                                        |

# Annex ZA (normative)

# Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cenelec.eu</u>.

| Publication | <u>Year</u> | Title                                                                                                                                                                                                                                                                                 | <u>EN/HD</u> | <u>Year</u> |
|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
| IEC 60216-1 | -           | Electrical insulating materials - Thermal<br>endurance properties - Part 1: Ageing<br>procedures and evaluation of test results                                                                                                                                                       | EN 60216-1   | -           |
| IEC 60216-3 |             | Electrical insulating materials - Thermal<br>endurance properties - Part 3: Instructions<br>for calculating thermal endurance<br>characteristics<br><u>SIST EN IEC 60172:2021</u><br>standards.iteh.ai/catalog/standards/sist/1406ef53-14e6-45<br>18a161315300/sist-en-iec-60172-2021 |              | -           |



# iTeh STANDARD PREVIEW (standards.iteh.ai)



Edition 5.0 2020-11

# INTERNATIONAL STANDARD

# NORME INTERNATIONALE



Test procedure for the determination of the temperature index of enamelled and tape wrapped winding wirestandards.iteh.ai)

Méthode d'essai pour la détermination de l'<u>indir</u>e de température des fils de bobinage émaillés et enveloppés de rubanist/1406ef53-14e6-45cb-a844-18a161315300/sist-en-iec-60172-2021

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.060.10

ISBN 978-2-8322-9086-6

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

### – 2 – IEC 60172:2020 © IEC 2020

### CONTENTS

| 1       Scope       6         2       Normative references       6         3       Terms and definitions       6         4       Summary of procedure       7         5       Test specimens       7         5       Test specimens       7         5.1       Preparation       7         5.1.1       Enamelled non-tape wrapped round wire       7         5.1.1       Tape wrapped round wire and enamelled or tape wrapped rectangular wire       10         5.2       Varish impregnation       12         5.3       Notes on number of test specimens       13         5.4.1       For specimens according to 5.1.1       13         5.4.2       For specimens according to 5.1.2       13         6       Temperature exposure       14         7       Test voitage and its application       15         8       Calculation and live time standbards.itch.ai)       16         8.1       Specimen failure time standbards.itch.ai)       16         8.2       Time to failure time standbards.itch.ai)       16         8.3       Linearity of data       Sist extended and temperature index.       17         9       Report       Isolo115300/sisten exc.0172.2021       18<                                                                                                                                                                                                            | F  | OREWO        | )RD                                                                        | 4  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------|----------------------------------------------------------------------------|----|
| 3       Terms and definitions       6         4       Summary of procedure       7         5       Test specimens       7         5       Test specimens       7         5.1       Preparation       7         5.1.1       Enamelled non-tape wrapped round wire       7         5.1.2       Tape wrapped round wire and enamelled or tape wrapped rectangular wire       10         5.2       Varnish impregnation       12         5.3       Notes on number of test specimens       13         5.4       Specimen holder       13         5.4.1       For specimens according to 5.1.1       13         5.4.2       For specimens according to 5.1.2       13         6       Test voltage and its application       15         8       Calculations       ITCeh STANDARD PREVIEW         16       8.1       Specimen failure time(standards.itch.ai)         8.2       Time to failure.       16         8.3       Linearity of data       Sint 500/sicch ic-60172-2021         8       Calculating and plotting thermal endurance and temperature index       17         9       Report       Iso16131500/sicch ic-60172-2021       18         Annex A (normative) Method for calculation of the regression l                                                                                                                                                                                 | 1  | Sco          | De                                                                         | 6  |
| 4       Summary of procedure       7         5       Test specimens       7         5       Test specimens       7         5.1       Preparation       7         5.1.1       Enamelied non-tape wrapped round wire       7         5.1.2       Tape wrapped round wire and enamelied or tape wrapped rectangular wire       10         5.2       Varish impregnation       12         5.3       Notes on number of test specimens       13         5.4       Specimen bolder       13         5.4.1       For specimens according to 5.1.1       13         5.4.2       For specimens according to 5.1.2       13         6       Temperature exposure       14         7       Test voltage and its application       15         8       Calculations       If Ch STANDARD PREVIEW       16         8.1       Specimen failure time (standards.itch.ati)       16         8.2       Time to failure       16       8.4       Calculating and plotting thermal endurance and temperature index       17         9       Report                                                                                                                                                                                                                                                                                                                                                                     | 2  | Norr         | native references                                                          | 6  |
| 5       Test specimens       7         5.1       Preparation       7         5.1.1       Enamelled non-tape wrapped round wire       7         5.1.2       Tape wrapped round wire and enamelled or tape wrapped rectangular wire       10         5.2       Varnish impregnation       12         5.3       Notes on number of test specimens       13         5.4       Specimen holder       13         5.4.1       For specimens according to 5.1.1       13         5.4.2       For specimens according to 5.1.2       13         6       Temperature exposure       14         7       Test voltage and its application       15         8       Calculations       ITCh STANDARD PREVIEW         16       8.1       Specimen failure time (standards.itch.ai)         16       8.1       Specimen failure time (standards.itch.ai)         16       8.1       Specimen failure time (standards.itch.ai)         16       8.1       Specime failure time (standards.itch.ai)         16       8.1       Specime failure time (standards.itch.ai)         17       9       Report       16         8.1       Specime failure time (standards.itch.ai)       16         8.2       Time to failure <td>3</td> <td>Terr</td> <td>ns and definitions</td> <td>6</td>                                                                                                                              | 3  | Terr         | ns and definitions                                                         | 6  |
| 5       Test specimens       7         5.1       Preparation       7         5.1.1       Enamelled non-tape wrapped round wire       7         5.1.2       Tape wrapped round wire and enamelled or tape wrapped rectangular wire       10         5.2       Varnish impregnation       12         5.3       Notes on number of test specimens       13         5.4       Specimen holder       13         5.4.1       For specimens according to 5.1.1       13         5.4.2       For specimens according to 5.1.2       13         6       Temperature exposure       14         7       Test voltage and its application       15         8       Calculations       ITCh STANDARD PREVIEW         16       8.1       Specimen failure time (standards.itch.ai)         16       8.1       Specimen failure time (standards.itch.ai)         16       8.1       Specimen failure time (standards.itch.ai)         16       8.1       Specime failure time (standards.itch.ai)         16       8.1       Specime failure time (standards.itch.ai)         17       9       Report       16         8.1       Specime failure time (standards.itch.ai)       16         8.2       Time to failure <td>4</td> <td>Sum</td> <td>mary of procedure</td> <td>7</td>                                                                                                                                | 4  | Sum          | mary of procedure                                                          | 7  |
| 5.1       Preparation       7         5.1.1       Enamelled non-tape wrapped round wire and enamelled or tape wrapped rectangular wire       7         5.1.2       Tape wrapped round wire and enamelled or tape wrapped rectangular wire       10         5.2       Varnish impregnation       12         5.3       Notes on number of test specimens       13         5.4       Specimen holder       13         5.4.1       For specimens according to 5.1.1       13         5.4.2       For specimens according to 5.1.2       13         6       Temperature exposure       14         7       Test voltage and its application       15         8       Calculations       ITCH STANDARD PREVIEW       16         8.1       Specimen failure time (standards.itch.ai)       16       8.2       Time to failure.       16         8.2       Time to failure.       Its intrance iand temperature index       17       9       9         9       Report       Its intrance iand temperature index       17       9         9       Report       Its intrance iand temperature index       17         9       Report       Its intrance iand temperature index       17         9       Report       Its intrains in intrance iand tem                                                                                                                                                         | 5  |              |                                                                            |    |
| 5.1.1       Enamelled non-tape wrapped round wire       7         5.1.2       Tape wrapped round wire and enamelled or tape wrapped rectangular wire       10         5.2       Varnish impregnation       12         5.3       Notes on number of test specimens       13         5.4       Specimen holder       13         5.4.1       For specimens according to 5.1.1       13         5.4.2       For specimens according to 5.1.2       13         6       Temperature exposure       14         7       Test voltage and its application       15         8       Calculations       ITent STANDARD PREVIEW       16         8.1       Specimen failure time (standards.iteh.ai)       16         8.2       Time to failure       16         8.3       Linearity of data       Sist tox its 40172/241       16         8.4       Calculating and plotting thermal endurance iand temperature index       17         9       Report       186(315300/sterm ice 60172.2021       18         Annex A (normative) Method for calculation of the regression line       19       19         Annex B (normative) Correlation coefficient       24       8       8         Bibliography       25       5       9       9       9 </td <td></td> <td></td> <td></td> <td></td>                                                                                                                      |    |              |                                                                            |    |
| 5.1.2       Tape wrapped round wire and enamelled or tape wrapped rectangular         wire       10         5.2       Varnish impregnation       12         5.3       Notes on number of test specimens       13         5.4       Specimen holder       13         5.4.1       For specimens according to 5.1.1       13         5.4.2       For specimens according to 5.1.2       13         6       Temperature exposure       14         7       Test voltage and its application       15         8       Calculations       ITCH STANDARD PREVIEW       16         8.1       Specimen failure time (standards.itch.ai)       16         8.2       Time to failure.       16         8.3       Linearity of data       SISCEN INC.60(172-202)       18         Annex A (normative) Method for calculation of the regression line       17       9         9       Report       180(13) S00(seter sec.60) (72-202)       18         Annex A (normative) Method for calculation of the regression line       19       19         Annex B (normative) Correlation coefficient       24       24         Bibliography       25       5       5         Figure 1 – Device used to form enamelled round wire test specimen       8                                                                                                                                                                 |    |              | •                                                                          |    |
| 5.3       Notes on number of test specimens       13         5.4       Specimen holder       13         5.4.1       For specimens according to 5.1.1       13         5.4.2       For specimens according to 5.1.2       13         6       Temperature exposure.       14         7       Test voltage and its application       15         8       Calculations <b>ITCh.STANDARD.PREVIEW</b> 16         8.1       Specimen failure time (standards.itch.ai)       16         8.2       Time to failure.       16         8.3       Linearity of data       SISTEN INC.60172.0001         8.4       Calculating and plotting thermal endurance and temperature index.       17         9       Report       INa161315300/sit-cn-icc-60172-2021       18         Annex A (normative)       Method for calculation of the regression line       19         Annex B (normative)       Correlation coefficient       24         Bibliography       25       Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8       Figure 5 – Test specimen formed with loop cut       10         Figure 5 – Test specimen formed with loop cut       10       Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11 <td></td> <td>-</td> <td>2 Tape wrapped round wire and enamelled or tape wrapped rectangular</td> <td></td> |    | -            | 2 Tape wrapped round wire and enamelled or tape wrapped rectangular        |    |
| 5.4       Specimen holder       13         5.4.1       For specimens according to 5.1.1       13         5.4.2       For specimens according to 5.1.2       13         6       Temperature exposure       14         7       Test voltage and its application       15         8       Calculations       ITen STANDARD PREVIEW       16         8.1       Specimen failure time(standards.itch.ai)       16         8.2       Time to failure       16         8.3       Linearity of data       SISCENTEC.0172.0001         8.4       Calculating and plotting thermal endurance and temperature index       17         9       Report       INal61315300/sit-en/sc-60172-2021       18         Annex A (normative)       Method for calculation of the regression line       19         Annex B (normative)       Correlation coefficient       24         Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 4 – Test specimen formed with loop cut       10         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specim                                                                                                                                    |    | 5.2          | Varnish impregnation                                                       |    |
| 5.4.1       For specimens according to 5.1.1       13         5.4.2       For specimens according to 5.1.2       13         6       Temperature exposure       14         7       Test voltage and its application       15         8       Calculations <b>ITCH STANDARD PREVIEW</b> 16         8.1       Specimen failure time(standards.iteh.ai)       16         8.2       Time to failure       16         8.3       Linearity of data       SISTEM IEC.601720001         8.4       Calculating and plotting thermal endurance and temperature index       17         9       Report       Isa161315300/sistem icc.60172-2021       18         Annex A (normative) Method for calculation of the regression line       19       19         Annex B (normative) Correlation coefficient       24       24         Bibliography       25       5       5       10         Figure 2 – Spacer       8       8       9       9         Figure 5 – Test specimen set up in forming jig       9       9       9         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11       11         Figure 7 – Forming jig and test specimen       12       12       13         Figure 8 – Specimen holder                                                                                                                                                                      |    | 5.3          | Notes on number of test specimens                                          | 13 |
| 5.4.2       For specimens according to 5.1.2       13         6       Temperature exposure       14         7       Test voltage and its application       15         8       Calculations       ITeh STANDARD PREVIEW       16         8.1       Specimen failure time (standards.iteh.ai)       16         8.2       Time to failure       16         8.3       Linearity of data       SISTEN IEC.60172-001         8.4       Calculating and plotting thermal endurance and temperature index       17         9       Report       Isal61315300/sist-en-icc.60172-2021       18         Annex A (normative)       Method for calculation of the regression line       19         Annex B (normative)       Correlation coefficient       24         Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure 9 – Thermal endurance grap                                                                                                                  |    | 5.4          | Specimen holder                                                            | 13 |
| 6       Temperature exposure       14         7       Test voltage and its application       15         8       Calculations       ITeh STANDARD PREVIEW       16         8.1       Specimen failure time(standards.itch.ai)       16         8.2       Time to failure       16         8.3       Linearity of data       SISTEN IEC.60(72.002)       16         8.4       Calculating and plotting thermal endurance land temperature index       17         9       Report       Isolo1315300sist-en-icc.60172-2021       18         Annex A (normative)       Method for calculation of the regression line       19         Annex B (normative)       Correlation coefficient       24         Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 4 – Test specimen set up in forming jig       9         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure 8 – Specimen holder                                                                                                                            |    | 5.4.         | For specimens according to 5.1.1                                           | 13 |
| 7       Test voltage and its application       15         8       Calculations <b>ITCH STANDARD PREVIEW</b> 16       8.1       Specimen failure time (standards.itch.ai)         8.2       Time to failure       16         8.3       Linearity of data       SIST.EX.IEC.60172.2021         8.4       Calculating and plotting thermal endurance land temperature index       17         9       Report       Isal61315300/sist-en-icc-60172-2021       18         Annex A (normative)       Method for calculation of the regression line       19         Annex B (normative)       Correlation coefficient       24         Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 5 – Test specimen set up in forming jig       9         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure 8 – Proof voltage for round enamelled wire       10         Table 1 – Force and number of twists for specimens                                                                                                          |    | • • • • •    |                                                                            |    |
| 8.1       Specimen failure time (standards.itch.ai)       16         8.2       Time to failure       16         8.3       Linearity of data       SISTEN INC. 60172.2021       16         8.4       Calculating and plotting thermal endurance and temperature index       17         9       Report       ISa161315300/sit-en-rec-60172.2021       18         Annex A (normative)       Method for calculation of the regression line       19         Annex B (normative)       Correlation coefficient       24         Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 4 – Test specimen set up in forming jig       9         Figure 5 – Test specimen formed with loop cut       10         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days                                                                              | 6  | Tem          | perature exposure                                                          | 14 |
| 8.1       Specimen failure time (standards.itch.ai)       16         8.2       Time to failure       16         8.3       Linearity of data       SISTEN INC. 60172.2021       16         8.4       Calculating and plotting thermal endurance and temperature index       17         9       Report       ISa161315300/sit-en-rec-60172.2021       18         Annex A (normative)       Method for calculation of the regression line       19         Annex B (normative)       Correlation coefficient       24         Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 4 – Test specimen set up in forming jig       9         Figure 5 – Test specimen formed with loop cut       10         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days                                                                              | 7  | Test         | voltage and its application                                                | 15 |
| 8.2       Time to failure       16         8.3       Linearity of data       SIST EN IBC 60172-2031       16         8.4       Calculating and plotting thermal endurance and temperature index       17         9       Report       I8a161315300/sist-en-icc-60172-2021       18         Annex A (normative)       Method for calculation of the regression line       19         Annex B (normative)       Correlation coefficient       24         Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 4 – Test specimen set up in forming jig       9         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure 8.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof vol                                                                     | 8  | Calc         | ulations ITeh STANDARD PREVIEW                                             |    |
| 8.2       Time to failure       16         8.3       Linearity of data       SIST EN IBC 60172-2031       16         8.4       Calculating and plotting thermal endurance and temperature index       17         9       Report       I8a161315300/sist-en-icc-60172-2021       18         Annex A (normative)       Method for calculation of the regression line       19         Annex B (normative)       Correlation coefficient       24         Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 4 – Test specimen set up in forming jig       9         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure 8.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof vol                                                                     |    | 8.1          | Specimen failure time standards itch ai)                                   |    |
| 8.3       Linearity of data       SIST IN IEC 60172-2021       16         8.4       Calculating and plotting thermal endurancel and temperature index       17         9       Report       18a161315300/sst-en-Ecc-60172-2021       18         Annex A (normative)       Method for calculation of the regression line       19         Annex B (normative)       Correlation coefficient       24         Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 4 – Test specimen set up in forming jig       9         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Pro                                                            |    | 8.2          | Time to failure                                                            |    |
| 9       Report       18a161315300/sist-en-icc-60172-2021       18         Annex A (normative)       Method for calculation of the regression line       19         Annex B (normative)       Correlation coefficient       24         Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 4 – Test specimen set up in forming jig       9         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       10         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                              |    | 8.3          |                                                                            |    |
| Annex A (normative) Method for calculation of the regression line       19         Annex B (normative) Correlation coefficient       24         Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 4 – Test specimen set up in forming jig       9         Figure 5 – Test specimen formed with loop cut       10         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped       14                                                                                                                                                                                                                                                                                                                                    |    | <b>-</b> · · |                                                                            |    |
| Annex B (normative) Correlation coefficient       24         Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 4 – Test specimen set up in forming jig       9         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                        | 9  | Rep          | ort                                                                        |    |
| Bibliography       25         Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 4 – Test specimen set up in forming jig       9         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                     | Aı | nnex A       | (normative) Method for calculation of the regression line                  | 19 |
| Figure 1 – Device used to form enamelled round wire test specimen       8         Figure 2 – Spacer       8         Figure 3 – Twist forming jig       9         Figure 4 – Test specimen set up in forming jig       9         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aı | nnex B       | (normative) Correlation coefficient                                        | 24 |
| Figure 2 – Spacer       8         Figure 3 – Twist forming jig.       9         Figure 4 – Test specimen set up in forming jig.       9         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 7 – Forming jig and test specimen.       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bi | bliogra      | phy                                                                        | 25 |
| Figure 2 – Spacer       8         Figure 3 – Twist forming jig.       9         Figure 4 – Test specimen set up in forming jig.       9         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 7 – Forming jig and test specimen.       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |              |                                                                            |    |
| Figure 3 – Twist forming jig.       9         Figure 4 – Test specimen set up in forming jig.       9         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fi | gure 1       | <ul> <li>Device used to form enamelled round wire test specimen</li> </ul> | 8  |
| Figure 3 – Twist forming jig.       9         Figure 4 – Test specimen set up in forming jig.       9         Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fi | gure 2       | – Spacer                                                                   | 8  |
| Figure 4 – Test specimen set up in forming jig9Figure 5 – Test specimen formed with loop cut10Figure 6 – Jig for bending large magnet wire, dielectric test specimen11Figure 7 – Forming jig and test specimen12Figure 8 – Specimen holder13Figure 9 – Thermal endurance graph – Temperature index17Figure A.1 – Plot of regression line based on sample calculation (Table A.2)23Table 1 – Force and number of twists for specimens8Table 2 – Proof voltage for round enamelled wire10Table 3 – Recommended exposure times in days per cycle14Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |              |                                                                            |    |
| Figure 5 – Test specimen formed with loop cut       10         Figure 6 – Jig for bending large magnet wire, dielectric test specimen       11         Figure 7 – Forming jig and test specimen       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |              |                                                                            |    |
| Figure 6 – Jig for bending large magnet wire, dielectric test specimen11Figure 7 – Forming jig and test specimen12Figure 8 – Specimen holder13Figure 9 – Thermal endurance graph – Temperature index17Figure A.1 – Plot of regression line based on sample calculation (Table A.2)23Table 1 – Force and number of twists for specimens8Table 2 – Proof voltage for round enamelled wire10Table 3 – Recommended exposure times in days per cycle14Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | •            |                                                                            |    |
| Figure 7 – Forming jig and test specimen.       12         Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | -            |                                                                            |    |
| Figure 8 – Specimen holder       13         Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | •            |                                                                            |    |
| Figure 9 – Thermal endurance graph – Temperature index       17         Figure A.1 – Plot of regression line based on sample calculation (Table A.2)       23         Table 1 – Force and number of twists for specimens       8         Table 2 – Proof voltage for round enamelled wire       10         Table 3 – Recommended exposure times in days per cycle       14         Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | -            |                                                                            |    |
| Figure A.1 – Plot of regression line based on sample calculation (Table A.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | -            |                                                                            |    |
| Table 1 – Force and number of twists for specimens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | -            |                                                                            |    |
| Table 2 – Proof voltage for round enamelled wire10Table 3 – Recommended exposure times in days per cycle14Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fi | gure A.      | 1 – Plot of regression line based on sample calculation (Table A.2)        | 23 |
| Table 3 – Recommended exposure times in days per cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Та | able 1 -     | - Force and number of twists for specimens                                 | 8  |
| Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Та | able 2 -     | - Proof voltage for round enamelled wire                                   | 10 |
| Table 4 – Proof voltage for tape-wrapped round and for enamelled or tape-wrapped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Та | able 3 -     | - Recommended exposure times in days per cycle                             | 14 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Та | able 4 -     | Proof voltage for tape-wrapped round and for enamelled or tape-wrapped     |    |

IEC 60172:2020 © IEC 2020 - 3 -

| Table A.1 – Commonly used test temperatures in degrees Celsius and the    |
|---------------------------------------------------------------------------|
| corresponding kelvins with its reciprocal and reciprocal squared values21 |
| Table A.2 – Sample calculation    22                                      |

### iTeh STANDARD PREVIEW (standards.iteh.ai)

### INTERNATIONAL ELECTROTECHNICAL COMMISSION

### TEST PROCEDURE FOR THE DETERMINATION OF THE TEMPERATURE INDEX OF ENAMELLED AND TAPE WRAPPED WINDING WIRES

### FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any enduser.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and timesome areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. icc-60172-2021
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60172 has been prepared by IEC Technical Committee 55: Winding wires.

This fifth edition cancels and replaces the fourth edition published in 2015. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- revision of 3.1, definition of thermal index;
- revision of 3.3, time to failure;
- revisions to 5.1.1 for clarity and to reduce the range wire size range to which the test applies;
- revisions to 5.1.2 for tape wrapped round and enamelled or tape wrapped rectangular wire for clarity;
- revision to Clause 9 to add the correlation coefficient, r to the report.

IEC 60172:2020 © IEC 2020

- 5 -

The text of this International Standard is based on the following documents:

| FDIS         | Report on voting |
|--------------|------------------|
| 55/1876/FDIS | 55/1893/RVD      |

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

### TEST PROCEDURE FOR THE DETERMINATION OF THE TEMPERATURE INDEX OF ENAMELLED AND TAPE WRAPPED WINDING WIRES

### 1 Scope

This International Standard specifies, in accordance with the provisions of IEC 60216-1, a method for evaluating the temperature index of enamelled wire, varnished or unvarnished with an impregnating agent, and of tape wrapped round and rectangular wire, in air at atmospheric pressure by periodically monitoring changes in response to AC proof voltage tests. This procedure does not apply to fibre-insulated wire or wire covered with tapes containing inorganic fibres.

NOTE The data obtained according to this test procedure provide the designer and development engineer with information for the selection of winding wire for further evaluation of insulation systems and equipment tests.

#### 2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies to STANDARD PREVIEW

IEC 60216-1, Electrical insulating materials - Thermal endurance properties – Part 1: Ageing procedures and evaluation of test results

SIST EN IEC 60172:2021

IEC 60216-3, *Electrical*<sub>st</sub>insulating<sub>al</sub> materials<sub>lands</sub>/Thermal-sendurance<sub>a</sub> properties – Part 3: Instructions for calculating thermal endurance characteristics

### 3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

### 3.1 temperature index

**TI** number which permits comparison of the temperature/time characteristics of an electrical insulating material, or a simple combination of materials, based on the temperature in degrees Celsius which is obtained by extrapolating the Arrhenius plot of life versus temperature to a lifetime of 20 000 h

Note 1 to entry: In case of insulation systems, the temperature index may be derived from known service experience or from a known comparative functional evaluation of an evaluated and established reference insulation system as basis.

[SOURCE: IEC 60050-212:2010, 212-12-11] modified by merging Note 1 into the definition, and to specify a lifetime of 20 000 h.]