ETSITS 128 554 V17.13.0 (2024-05)

5G; Management and orchestration; 5G end to end Key Performance Indicators (KPI) (3GPP TS 28.554 version 17.13.0 Release 17)

<u>ETSLTS 128 554 V17.13.0 (2024-05)</u>

https://standards.iteh.ai/catalog/standards/etsi/53fd6c42-a19e-4a8b-a575-a79549d31847/etsi-ts-128-554-v17-13-0-2024-0

Reference RTS/TSGS-0528554vhd0 Keywords

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from: https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our Coordinated Vulnerability Disclosure Program: https://standards.iteh.ai/catalog/sta

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or other professional standard and applicable regulations.

No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI. The copyright and the foregoing restriction extend to reproduction in all media.

> © ETSI 2024. All rights reserved.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECTTM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M**TM logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. **GSM**[®] and the GSM logo are trademarks registered and owned by the GSM Association.

Legal Notice

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found under https://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intelle	ectual Property Rights	2
Legal	Notice	2
Moda	l verbs terminology	2
Forew	ord	6
1	Scope	7
2	References	7
3	Definitions and abbreviations.	7
3.1	Definitions	7
3.2	Abbreviations	8
	End to end KPI concept and overview	
	KPI definitions template	
	End to end KPI definitions	
6.1	KPI Overview	
6.2	Accessibility KPI	
6.2.1	Mean registered subscribers of network and network slice through AMF	
6.2.2	Registered subscribers of network through UDM	
6.2.3	Registration success rate of one single network slice	9
6.2.4	Partial DRB Accessibility for UE services	10
6.2.5	PDU session Establishment success rate of one network slice (S-NSSAI)	10
6.2.6	Maximum registered subscribers of network slice through AMF	
6.2.7	Total DRB accessibility for UE services	
6.2.8	Mean CM-Connected subscribers of network slice through AMF	
6.2.9	Maximum on-line subscribers of network slice through AMF	
6.2.10		
6.3	Integrity KPI	
6.3.1	Latency and delay of 5G networks 1.28.554.4.4.17.4.2.0.(2.024.05)	
6.3.1.0	teh ai/ca Void	12-0-2024-05
6.3.1.1	Downlink latency in gNB-DU	12
6.3.1.2	Integrated downlink delay in RAN	12
6.3.1.2		
6.3.1.2	· · · · · · · · · · · · · · · · · · ·	
6.3.1.3	·	
6.3.1.3	· ·	
6.3.1.3	·	
6.3.1.3		
		14
6.3.1.4	• •	
6.3.1.4	, <i>U</i>	
6.3.1.4	• •	
6.3.1.4	, ,	
6.3.1.5		16
6.3.1.5	Uplink delay in gNB-DU for a NR cell	16
6.3.1.5		
6.3.1.5		
6.3.1.6		
6.3.1.6	5.1 Uplink delay in gNB-CU-UP	
	1 , 5	
6.3.1.6	1 , 6	
6.3.1.6	1	
6.3.1.7		
6.3.1.7	1	
6.3.1.7	Uplink delay in NG-RAN for a network slice subnet	20
6.3.1.8	E2E delay for network slice	20
6.3.1.8	·	

6.3.1.8.2	Average e2e downlink delay for a network slice	
6.3.2	Upstream throughput for network and Network Slice Instance	
6.3.3	Downstream throughput for Single Network Slice Instance	
6.3.4	Upstream Throughput at N3 interface	
6.3.5	Downstream Throughput at N3 interface	
6.3.6	RAN UE Throughput	
6.3.6.1	Void	22
6.3.6.2	RAN UE Throughput definition	22
6.3.6.3	DL RAN UE throughput	23
6.3.6.3.1	DL RAN UE throughput for a NRCellDU	23
6.3.6.3.2	DL RAN UE throughput for a sub-network	
6.3.6.3.3	DL RAN UE throughput for a network slice subnet	
6.3.6.4	UL RAN UE throughput	
6.3.6.4.1	UL RAN UE throughput for a NRCellDU	
6.3.6.4.2	UL RAN UE throughput for a sub-network	
6.3.6.4.3	UL RAN UE throughput for a network slice subnet	
6.4	Utilization KPI	
6.4.1	Mean number of PDU sessions of network and network Slice Instance.	
6.4.2	Virtualised Resource Utilization of Network Slice Instance	
6.4.3	PDU session establishment time of network slice	
6.4.4	Mean number of successful periodic registration updates of Single Network Slice	
6.4.5	Maximum number of PDU sessions of network slice	
6.4.3 6.5	Retainability KPI	
6.5.1	·	
	QoS flow Retainability	
6.5.1.1	Definition	
6.5.1.2	Extended definition	
6.5.2	DRB Retainability	
6.5.2.1	Definition Statutal US	
6.5.2.2	Extended definition	29
6.6	Mobility KPI	
6.6.1	NG-RAN handover success rate	
6.6.2	Mean Time of Inter-gNB handover Execution of Network Slice	
6.6.3	Successful rate of mobility registration updates of Single Network Slice	
6.6.4	5GS to EPS handover success rate	
6.6.5	NG-RAN handover success rate for all handover types	
6.7	Energy Efficiency (EE) KPI.	
6.7.1	NG-RAN data Energy Efficiency (EE).	
6.7.1.1	Definition	
6.7.2	Network slice Energy Efficiency (EE)	31
6.7.2.1	Generic Network Slice Energy Efficiency (EE) KPI	31
6.7.2.2	Energy efficiency of eMBB network slice	31
6.7.2.2a	Energy efficiency of eMBB network slice – RAN-based	32
6.7.2.2a.1	Definition	
6.7.2.3	Energy efficiency of URLLC network slice	
6.7.2.3.1	Introduction	
6.7.2.3.2	Based on latency of the network slice	
6.7.2.3.3	Based on both latency and Data Volume (DV) of the network slice	
6.7.2.4	Energy efficiency of MIoT network slice	
6.7.2.4.1	Based on the number of registered subscribers of the network slice	
6.7.2.4.2	Based on the number of active UEs in the network slice	
6.7.3	5G Energy Consumption (EC)	
6.7.3.1	NF Energy Consumption (EC)	
6.7.3.1.1	Definition	
6.7.3.1.1		
	Estimated Virtualized Network Function (VNF) energy consumption	
6.7.3.1.3	Estimated Virtualized Network Function Component (VNFC) energy consumption	
6.7.3.1.4	Estimated virtual compute resource instance energy consumption based on mean vCPU usage.	
6.7.3.2	5GC Energy Consumption (EC)	
6.7.3.2.1	Definition	
6.7.3.3	Network Slice Energy Consumption (EC)	
6.7.3.4	NG-RAN Energy Consumption (EC)	
6.7.3.4.1	NG-RAN EC	
67312	aNR FC	30

	6.7.4	5GC Energy Efficiency (EE)	39
	6.7.4.		
	6.7.4.2		
	6.8	Reliability KPI	
	6.8.1	Definition	
	6.8.1.2 6.8.1.2	· · · · · · · · · · · · · · · · · · ·	
	6.8.1.3	· · · · · · · · · · · · · · · · · · ·	
	6.8.1.4	•	
	Anne	ex A (informative): Use cases for end to end KPIs	43
	A.1	Use case for end-to-end latency measurements of 5G network-related KPI	43
	A.2	Use case for number of registered subscribers of single network-slice related KPI	43
	A.3	Use case for upstream/downstream throughput for one-single-network-slice-related KPI	43
	A.4	Use case for mean PDU sessions number in network slice	43
	A.5	Use case for virtualised resource utilization of network-slice-related KPI	44
	A.6	Use case for 5GS registration success rate of one single-network-slice-related KPI	44
	A.7	Use case for RAN UE throughput-related KPI	44
	A.8	Use case for QoS flow retainability-related KPI	
	A.9	Use case for DRB accessibility-related KPIs	
	A.10	Use case for mobility KPIs	45
	A.11	Use case for DRB retainability related KPI	45
	A.12	Use case for PDU session establishment success rate of one network slice (S-NSSAI) related KF	PI45
	A.13	Use case for integrated downlink latency in RAN	45
	A.14	Use case for PDU session Establishment success rate of one single-network-slice instance-relate KPI	
	A.15	Use case for QoS flow retainability-related KPI	1.746_0-20
	A.16	Use case for 5G Energy Efficiency (EE) KPI	46
	A.17	Use case for PFCP session established success rate of one network and one network slice instance-related KPI	47
	A.18	Use case for end-to-end reliability measurements of 5G network-related KPI	47
	Anne	ex B (informative): Change history	48
	Histo	rv	50

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

iTeh Standards (https://standards.iteh.ai) Document Preview

ETSLTS 128 554 V17.13.0 (2024-05)

0-17-13-0-2024 https://standards.iteh.ai/catalog/standards/etsi/53fd6c42-a19e-4a8b-a575-a79549d31847/etsi

1 Scope

The present document specifies end-to-end Key Performance Indicators (KPIs) for the 5G network and network slicing.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- 3GPP TR 21.905: "Vocabulary for 3GPP Specifications". [1] [2] Void. ITU-T Recommendation E.800: "Definitions of terms related to quality of service". [3] [4] 3GPP TS 24.501: "Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3". 3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification". [5] [6] 3GPP TS 28.552: "Management and orchestration; 5G performance measurements". 3GPP TS 23.501: "System Architecture for the 5G System; Stage 2". [7] [8] ETSI ES 203 228 V1.2.1 (2017-04): "Environmental Engineering (EE); Assessment of mobile network energy efficiency". 3GPP TS 28.310: "Management and orchestration; Energy efficiency of 5G". [9] [10] ETSI 202 336-12 V1.2.1 (2019-02): "Environmental Engineering (EE); Monitoring and control interface for infrastructure equipment (power, cooling and building environment systems used in telecommunication networks); Part 12: ICT equipment power, energy and environmental parameters monitoring information model". [11] ETSI GS NFV-IFA 027 V4.0.2 (2020-11): "Network Functions Virtualisation (NFV) Release 4; Management and Orchestration; Performance Measurements Specification". 3GPP TS 38.314: "NR; layer 2 measurements". [12] [13] 3GPP TS 22.261: "Service requirements for the 5G system".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

EE Energy Efficiency kbit kilobit (1000 bits) RTT Round Trip Time

4 End to end KPI concept and overview

The following KPI categories are included in the present document:

- Accessibility (see the definition in [3]).
- Integrity (see the definition in [3]).
- Utilization.
- Retainability (see the definition in [3]).
- Mobility.
- Energy Efficiency.
- Reliability (See the definition in [13]). The Standards

Editor's note: For future update of the document it will also include:

Availability.

5 KPI definitions template

- a) Name (Mandatory): This field shall contain the name of the KPI.
- b) Description (Mandatory): This field shall contain the description of the KPI. Within this field it should describe if the KPI is focusing on network or user view. This filed should also describe the logical KPI formula to derive the KPI. For example, a success rate KPI's logical formula is the number of successful events divided by all events. This field should also show the KPI unit (e.g., kbit/s, millisecond) and the KPI type (e.g., mean, ratio).
- c) Formula definition (Optional):

This field should contain the KPI formula using the 3GPP defined measurement names. This field can be used only when the measurement(s) needed for the KPI formula are defined in 3GPP TS for performance measurements (TS 28.552 [6]). This field shall clarify how the aggregation shall be done, for the KPI object level(s) defined in d).

d) KPI Object (Mandatory):

This field shall contain the DN of the object instance where the KPI is applicable, including the object where the measurement is made. The DN identifies one object instance of the following IOC:

- NetworkSliceSubnet
- SubNetwork
- NetworkSlice
- NRCellDU
- NRCellCU

e) Remark (Optional):
 This field is for additional information reqquired for the KPI definition,
 e.g. the definition of a call in UTRAN.

6 End to end KPI definitions

6.1 KPI Overview

The KPI categories defined in [3] will be reused by the present document.

6.2 Accessibility KPI

6.2.1 Mean registered subscribers of network and network slice through AMF

- a) AMFMeanRegNbr.
- b) This KPI describe the mean number of subscribers that are registered to a network slice instance. It is obtained by counting the subscribers in AMF that are registered to a network slice instance. It is an Integer. The KPI type is MEAN.
- c) $AMFMeanRegNbr = \sum_{AMF} RM.RegisteredSubNbrMean.SNSSAI$
- d) SubNetwork, NetworkSlice

6.2.2 Registered subscribers of network through UDM

- a) UDMRegNbr.
- b) This KPI describe the total number of subscribers that are registered to a network through UDM. It is corresponding to the measurement RM.RegisteredSubUDMNbrMean that counts subscribers registered in UDM.
 It is an Integer. The KPI type is MEAN.
- c) $UDMRegNbr = \sum_{UDM} RegisteredSubUDMNbrMean$
- d) SubNetwork

6.2.3 Registration success rate of one single network slice

- a) RSR.
- b) This KPI describes the ratio of the number of successfully performed registration procedures to the number of attempted registration procedures for the AMF set which related to one single network slice and is used to evaluate accessibility provided by the end-to-end network slice and network performance. It is obtained by successful registration procedures divided by attempted registration procedures. It is a percentage. The KPI type is RATIO.

c)

$$RSR = \frac{\sum_{Type} AMF.5GSRegisSucc.Type}{\sum_{Type} AMF.5GSRegisAtt.Type} *100\%$$

NOTE: Above measurements with subcounter . Type should be defined in 3GPP TS 24.501 [4].

d) NetworkSlice

6.2.4 Partial DRB Accessibility for UE services

- a) Partial DRB Accessibility
- b) This KPI describes the DRBs setup success rate, including the success rate for setting up RRC connection and NG signalling connection. It is obtained as the success rate for RRC connection setup multiplied by the success rate for NG signalling connection setup multiplied by the success rate for DRB setup. The success rate for RRC connection setup and for NG signalling connection setup shall exclude setups with establishment cause mo-Signalling [5]. It is a percentage. The KPI type is RATIO.
- c) Partial DRBAccessibility 5QI = (∑RRC.ConnEstabSucc.Cause/∑RRC.ConnEstabAtt.Cause) * (∑UECNTXT.ConnEstabSucc.Cause/∑ UECNTXT.ConnEstabAtt.Cause) * (DRB.EstabSucc.5QI/DRB.EstabAtt.5QI) * 100

```
Partial DRB Accessibility SNSSAI = (\sum RRC.ConnEstabSucc.Cause/\sum RRC.ConnEstabAtt.Cause) * (\sum UECNTXT.ConnEstabSucc.Cause/\sum UECNTXT.ConnEstabAtt.Cause) * (DRB.EstabSucc.SNSSAI/DRB.EstabAtt.SNSSAI) * 100.
```

The sum over causes shall exclude the establishment cause mo-Signalling [5].

For KPI on SubNetwork level the measurement shall be the averaged over all NRCellCUs in the SubNetwork

d) SubNetwork, NRCellCU.

6.2.5 PDU session Establishment success rate of one network slice (S-NSSAI)

- a) PDUSessionEstSR. (https://standards.iteh.ai)
- b) This KPI describes the ratio of the number of successful PDU session establishment request to the number of PDU session establishment request attempts for all SMF which related to one network slice (S-NSSAI) and is used to evaluate accessibility provided by the end-to-end network slice and network performance. It is obtained by the number of successful PDU session requests divided by the number of attempted PDU session requests. It is a percentage. The KPI type is RATIO.
- c) $PDUSessionEstSR = \frac{\sum_{SMF}SM.PduSessionCreationSucc.SNSSAI}{\sum_{SMF}SM.PduSessionCreationReq.SNSSAI} \times 100$
- d) NetworkSlice

6.2.6 Maximum registered subscribers of network slice through AMF

- a) AMFMaxRegNbr.
- b) This KPI describe the maximum number of subscribers that are registered to a network slice. It is obtained by counting the subscribers in AMF that are registered to a network slice. It is an Integer. The KPI type is CUM.
- c) AMFMaxRegNbr = \sum_{AMF} RM. RegisteredSubNbrMax. SNSSAI
- d) NetworkSlice

6.2.7 Total DRB accessibility for UE services

- a) Total DRB accessibility
- b) This KPI describes the total DRBs accessibility obtained as the ratio of the number of successfully established DRBs and number of services intended to be setup by the end user that shall result into a DRB establishment via Initial Context setup procedure, Added DRB setup and RRC Resume procedure. The number of services intended to be setup by the end user that shall result into a DRB establishment via Initial Context setup procedure is obtained as number of attempted establishments of DRB via Initial Context setup procedure amplified by inverse of the UE-associated logical NG-connection success ratio further amplified by inverse of

the RRC Connection setup state success ratio. The number of services intended to be setup by the end user that shall result into a DRB establishment via added DRB setup procedure is measured directly in gNB via number of attempted establishments of DRB via added DRB setup procedure. Finally the number of services intended to be setup by the end user that shall result into a DRB establishment via RRC Resume procedure is provided as number of attempted establishments of DRB via RRC Resume procedure amplified by inverse of the RRC Resume success ratio. The success rate for RRC connection setup and for UE-associated logical NG-connection setup shall exclude setups with establishment cause mo-Signalling [5]. The success rate for RRC resume shall exclude setups related to RNA update. It is a percentage. The KPI type is RATIO.

c) DRBAccessibility 5QI = 100 * (DRB.InitialEstabSucc.5QI + (DRB.EstabSucc.5QI-DRB.InitialEstabSucc.5QI) + DRB.ResumeSucc.5QI)/(DRB.InitialEstabAtt.5QI/((RRC connection setup success rate /100)*(UE-associated logical NG-connection success ratio/100)) + (DRB.EstabAtt.5QI-DRB.InitialEstabAtt.5QI) + DRB.ResumeAtt.5QI/(RRC Resume success rate/100))

DRBAccessibility SNSSAI = 100 * (DRB.InitialEstabSucc. SNSSAI + (DRB.EstabSucc. SNSSAI - DRB.InitialEstabSucc. SNSSAI) + DRB.ResumeSucc. SNSSAI)/(DRB.InitialEstabAtt. SNSSAI /((RRC connection setup success rate /100)*(UE-associated logical NG-connection success ratio /100)) + (DRB.EstabAtt. SNSSAI -DRB.InitialEstabAtt. SNSSAI) + DRB.ResumeAtt. SNSSAI /(RRC Resume success rate/100))

Where:

RRC Resume success rate = $100* \Sigma$ RRC.ResumeSucc.cause / Σ (RRC.ResumeAtt.cause - RRC.ResumeFallbackToSetupAtt.cause), where all but the causes related to RNA update shall be included.

RRC connection setup success rate = 100* (Σ (RRC.ConnEstabSucc.Cause + RRC.ResumeSuccByFallback.cause) + RRC.ReEstabSuccWithoutUeContext) /(Σ (RRC.ConnEstabAtt.Cause + RRC.ResumeFallbackToSetupAtt.cause) + RRC.ReEstabFallbackToSetupAtt)

UE-associated logical NG-connection success ratio = $100*(\Sigma \text{ UECNTXT.ConnEstabSucc.Cause}/\Sigma \text{ UECNTXT.ConnEstabAtt.Cause})$

The sum over causes shall exclude the establishment cause mo-Signalling [5].

The sum over causes for RRC resume shall exclude the causes related to RNA update [5].

For KPI on SubNetwork level the measurement shall be the averaged over all NRCellCUs in the SubNetwork

d) SubNetwork, NRCellCU.

6.2.8 Mean CM-Connected subscribers of network slice through AMF

- a) AMFMeanCmConNbr.
- b) This KPI describe the mean number of subscribers in a period that are not only registered to a network slice but also established a PDU session related to the network slice. And subscribers also have a NAS signalling connection with the AMF over N1. It is obtained by counting the subscribers in AMF that are showed "cm-connected" state for a network slice. It is an Interger. The KPI type is CUM.

c)

$$AMFMeanCmConNbr = \sum_{AMF} CM - ConnectedSubNbrMean.SNSSAI$$

d) NetworkSlice.

6.2.9 Maximum on-line subscribers of network slice through AMF

- a) AMFMaxCmConNbr.
- b) This KPI describe the maximum number of subscribers in a period that are not only registered to a network slice but also established a PDU session related to a network slice. And subscribers also have a NAS signalling

connection with the AMF over N1. It is obtained by counting the subscribers in AMF that are showed "cm-connected" state for a network slice. It is an Interger. The KPI type is CUM.

c)

$$AMFMaxCmConNbr = \sum_{AMF} CM - ConnectedSubNbrMax.SNSSAI$$

d) NetworkSlice.

6.2.10 PFCP session established success rate of one network and one network slice

- a) PFCPSessionEstSR.
- b) This KPI describes the successful rate of PFCP session established in a network or a network slice e on the UPF.

It is used to evaluate the quality of user-plane connection established and the accessibility provided by the end-to-end network slice and network performance. It is obtained by the number of successful PFCP session requests divided by the number of attempted PFCP session requests. It is a percentage. The KPI type is RATIO.

c)

$$PFCPsessionEstSR = \frac{UPF.\,PFCPSessionCreationSucc.\,SNSSAI}{UPF.\,PFCPSessionCreationReq.\,SNSSAI}$$

- d) Subnetwork, NetworkSlice.
- 6.3 Integrity KPI ps://standards.iteh.ai)
- 6.3.1 Latency and delay of 5G networks
- 6.3.1.0 Void

6.3.1.1 Downlink latency in gNB-DU

- a) DLLat_gNB-DU.
- b) This KPI describes the gNB-DU part of the packet transmission latency experienced by an end-user. It is used to evaluate the gNB latency contribution to the total packet latency. It is the average (arithmetic mean) of the time from reception of IP packet to gNB-DU until transmission of first part of that packet over the air interface, for a packet arriving when there is no previous data in queue for transmission to the UE. It is a time interval (0.1 mS). The KPI type is MEAN. This KPI can optionally be split into KPIs per QoS level (mapped 5QI or QCI in NR option 3) and per S-NSSAI.
- c) DLLat_gNB-DU = DRB.RlcSduLatencyDl

or optionally DLLat_gNB-DU. QoS = DRB.RlcSduLatencyDl.QoS where QOS identifies the target QoS quality of service class.

or optionally DLLat gNB-DU. SNSSAI = DRB.RlcSduLatencyDl. SNSSAI where SNSSAI identifies the S-NSSAI.

d) NRCellDU

6.3.1.2 Integrated downlink delay in RAN

6.3.1.2.1 Downlink delay in NG-RAN for a sub-network

- a) DLDelay_NR_SNw.
- b) This KPI describes the average packet transmission delay through the RAN part to the UE. It is used to evaluate delay performance of NG-RAN in downlink for a sub-network. It is the weighted average packets delay from reception of IP packet in gNB-CU-UP until the last part of an RLC SDU packet was received by the UE according to received HARQ feedback information for UM mode or until the last part of an RLC SDU packet was received by the UE according to received RLC ACK for AM mode. It is a time interval (0.1 ms). The KPI type is MEAN. This KPI can optionally be split into KPIs per QoS level (mapped 5QI or QCI in NR option 3) and per S-NSSAI.
- c) Below are the equations for average "Integrated downlink delay in RAN" for this KPI on SubNetwork level. The "Integrated downlink delay in RAN" is the sum of average DL delay in gNB-CU-UP of the sub-network (DLDelay_gNBCUUP_SNw) and the average DL delay in gNB-DU of the sub-network (DLDelay_gNBDU_SNw):

 $DLDelay_NR_SNw = DLDelay_gNBCUUP_SNw + DLDelay_gNBDU_SNw$

or optionally DLDelay_NR_SNw.QOS = DLDelay_gNBCUUP_SNw.QOS + DLDelay_gNBDU_SNw.QOS where QOS identifies the target quality of service class.

or optionally DLDelay_NR_SNw.SNSSAI = DLDelay_gNBCUUP_SNw.SNSSAI + DLDelay_gNBDU_SNw.SNSSAI where SNSSAI identifies the S-NSSAI.

d) SubNetwork

6.3.1.2.2 Downlink delay in NG-RAN for a network slice subnet

- a) DLDelay_NR_Nss.
- b) This KPI describes the average packet transmission delay through the RAN part to the UE. It is used to evaluate delay performance of NG-RAN in downlink for a network slice subnet. It is the weighted average packets delay from reception of IP packet in gNB-CU-UP until the last part of an RLC SDU packet was received by the UE according to received HARQ feedback information for UM mode or until the last part of an RLC SDU packet was received by the UE according to received RLC ACK for AM mode. It is a time interval (0.1 ms). The KPI type is MEAN.
- c) Below is the equation for average "Integrated downlink delay in RAN" for this KPI on NetworkSliceSubnet level. The "Integrated downlink delay in RAN" for network slice subnet is the sum of average DL delay in gNB-CU-UP of the network slice subnet (DLDelay_gNBCUUP_Nss) and the average DL delay in gNB-DU of the network slice subnet (DLDelay_gNBDU_Nss):

DLDelay_NR_Nss.SNSSAI = DLDelay_gNBCUUP_Nss.SNSSAI + DLDelay_gNBDU_Nss.SNSSAI where SNSSAI identifies the S-NSSAI that the network slice subnet supports.

d) NetworkSliceSubnet

6.3.1.3 Downlink delay in gNB-DU

6.3.1.3.1 Downlink delay in gNB-DU for a NRCellDU

- $a) \ \ DLDelay_gNBDU_Cell.$
- b) This KPI describes the average packet transmission delay through the gNB-DU part to the UE. It is used to evaluate delay performance of gNB-DU in downlink. It is the average packets delay time from arrival of an RLC SDU at the RLC ingress F1-U termination until the last part of an RLC SDU packet was received by the UE according to received HARQ feedback information for UM mode or until the last part of an RLC SDU packet was received by the UE according to received RLC ACK for AM mode. It is a Time interval (0.1 ms). The KPI type is MEAN. This KPI can optionally be split into KPIs per QoS level (mapped 5QI or QCI in NR option 3) and per S-NSSAI.