Designation: C150/C150M - 09 # **Standard Specification for** Portland Cement¹ This standard is issued under the fixed designation C150/C150M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval. This standard has been approved for use by agencies of the Department of Defense. # 1. Scope* - 1.1 This specification covers eightten types of portland cement, as follows (see Note 2): - 1.1.1 Type I—For use when the special properties specified for any other type are not required. - 1.1.2 Type IA—Air-entraining cement for the same uses as Type I, where air-entrainment is desired. - 1.1.3 Type II—For general use, more especially when moderate sulfate resistance or moderate heat of hydration is desired. —For general use, more especially when moderate sulfate resistance is desired. - 1.1.4 Type IIA—Air-entraining cement for the same uses as Type II, where air-entrainment is desired. - 1.1.5 Type II(MH)—For general use, more especially when moderate heat of hydration and moderate sulfate resistance are desired. - 1.1.6 Type II(MH)A—Air-entraining cement for the same uses as Type II(MH), where air-entrainment is desired. - 1.1.7 Type III—For use when high early strength is desired. - 1.1.8 Type IIIA—Air-entraining cement for the same use as Type III, where air-entrainment is desired. - 1.1.7 - 1.1.9 Type IV—For use when a low heat of hydration is desired. - 1.1.10 Type V—For use when high sulfate resistance is desired. - Note 1-Some cements are designated with a combined type classification, such as Type I/II, indicating that the cement meets the requirements of the indicated types and is being offered as suitable for use when either type is desired. - Note 2—Cement conforming to the requirements for all types are not carried in stock in some areas. In advance of specifying the use of cement other than Type I, determine whether the proposed type of cement is, or can be made, available. - 1.2When both SI and inch-pound units are present, the SI units are the standard. The inch-pound units are approximations listed for information only. - 1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Values in SI units [or inch-pound units] shall be obtained by measurement in SI units [or inch-pound units] or by appropriate conversion, using the Rules for Conversion and Rounding given in IEEE/ASTM SI 10, of measurements made in other units [or SI units]. Values are stated in only SI units when inch-pound units are not used in practice. - 1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard. # 2. Referenced Documents - 2.1 ASTM Standards:² - C33 Specification for Concrete Aggregates - C51 Terminology Relating to Lime and Limestone (as used by the Industry) ¹ This specification is under the jurisdiction of ASTM Committee C01 on Cement and is the direct responsibility of Subcommittee C01.10 on Hydraulic Cements for General Concrete Construction. Current edition approved May 1, 2007. Published June 2007. Originally approved in 1940. Last previous edition approved in 2005 as C150-05. DOI: 10.1520/C0150-07. Current edition approved June 15, 2009. Published July 2009. Originally approved in 1940. Last previous edition approved in 2007 as C150-07. DOI: 10.1520/C0150_C0150M-09. ² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website. C109/C109M Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) - C114 Test Methods for Chemical Analysis of Hydraulic Cement - C115 Test Method for Fineness of Portland Cement by the Turbidimeter - C151 Test Method for Autoclave Expansion of Hydraulic Cement - C183 Practice for Sampling and the Amount of Testing of Hydraulic Cement - C185 Test Method for Air Content of Hydraulic Cement Mortar - C186 Test Method for Heat of Hydration of Hydraulic Cement - C191 Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle - C204 Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus - C219 Terminology Relating to Hydraulic Cement - C226 Specification for Air-Entraining Additions for Use in the Manufacture of Air-Entraining Hydraulic Cement - C266 Test Method for Time of Setting of Hydraulic-Cement Paste by Gillmore Needles - C451 Test Method for Early Stiffening of Hydraulic Cement (Paste Method) - C452 Test Method for Potential Expansion of Portland-Cement Mortars Exposed to Sulfate - C465 Specification for Processing Additions for Use in the Manufacture of Hydraulic Cements - C563 Test Method for Approximation of Optimum SO₃ in Hydraulic Cement Using Compressive Strength - C1038 Test Method for Expansion of Hydraulic Cement Mortar Bars Stored in Water - E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications IEEE/ASTM SI 10 American National Standard for Use of the International System of Units (SI): The Modern Metric System # 3. Terminology 3.1 *Definitions*—See Terminology C219. # 4. Ordering Information - 4.1 Orders for material under this specification shall include the following: - 4.1.1 This specification number and date, - 4.1.2 Type or types allowable. If no type is specified, and are supplied, - 4.1.3 Any optional chemical requirements from Table 2, if desired, and - 4.1.4 Any optional physical requirements from Table 4, if desired. # 5. Ingredients - 5.1 The cement covered by this specification shall contain no ingredients except as follows: - 5.1.1 Portland cement clinker. Ostandards/sist/ - 5.1.2 Water or calcium sulfate, or both. The amounts shall be such that the limits shown in Table 1 for sulfur trioxide and loss-on-ignition are not exceeded. - 5.1.3 Limestone. The amount shall not be more than 5.0 % by mass such that the chemical and physical requirements of this standard are met (See Note 3). The limestone, defined in Terminology C51, shall be naturally occurring and consist of at least 70 % by mass of one or more of the mineral forms of calcium carbonate. Note 3—The standard permits up to 5 % by mass of the final cement product to be naturally occurring, finely ground limestone, but does not require that limestone be added to the cement. Cement without ground limestone can be specified in the contract or order. # 5.1.4Processing additions. They shall have been shown to meet the requirements of Specification - 5.1.4 Inorganic processing additions. The amount shall be not more than 5.0 % by mass of cement. Not more than one inorganic processing addition shall be used at a time. For amounts greater than 1.0 %, they shall have been shown to meet the requirements of Specification C465 in the amounts used or greater. - 5.1.5Air-entraining addition (for air-entraining portland cement only). The interground addition shall conform to the requirements of Specification for the inorganic processing addition in the amount used or greater. If an inorganic processing addition is used, the manufacturer shall report the amount (or range) used, expressed as a percentage of cement mass, along with the oxide composition of the processing addition. - 5.1.5 Organic Processing additions. They shall have been shown to meet the requirements of Specification C465 in the amounts used or greater and the total amount of organic processing additions used shall not exceed 1.0 % by mass of cement. - 5.1.6 Air-entraining addition (for air-entraining portland cement only). The interground addition shall conform to the requirements of Specification C226. # 6. Chemical Composition 6.1 Portland cement of each of the <u>eightten</u> types shown in Section 1 shall conform to the respective standard chemical requirements prescribed in Table 1. In addition, optional chemical requirements are shown in Table 2. #### **TABLE 1 Standard Composition Requirements** | Cement Type ^A | Applicable Test Method | I and IA | II and | II(MH)
and
II(MH)A | III and
IIIA | IV | V | |---|------------------------|------------------|-------------------------|-----------------------------|-----------------|------------------------------------|-----------------| | Aluminum oxide (Al ₂ O ₃), max, % | C114 | | -6.0 | | | | | | Aluminum oxide (Al ₂ O ₃), max, % | <u>C114</u> | <u></u> | 6.0
6.0 ^B | 6.0 | <u></u> | <u></u> | | | Ferric oxide (Fe ₂ O ₃), max, % | C114 | | -6.0^{B} | 6.0.C | | -6.5 | | | Ferric oxide (Fe ₂ O ₃), max, % | <u>C114</u> | <u></u> | $\frac{6.0^{B}}{-6.0}$ | $6.0^{B,C}$ | | 6.5 | | | Magnesium oxide (MgO), max, % | C114 | 6.0 | -6.0 | | -6.0 | -6.0 | -6.0 | | Magnesium oxide (MgO), max, % | C114
C114 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Sulfur trioxide (SO ₃), ^D max, % | C114 | | | | | | | | —When (C₃A) ^E is 8 % or less | | 3.0 | -3.0 | | -3.5 | -2.3 | -2.3 | | When $(C_3A)^E$ is 8 % or less | | 3.0
3.5 | 3.0 | 3.0 | 3.5
-4.5 | 2.3 | 2.3 | | —When (C ₃ A) ^E is more than 8 % | | 3.5 | | | | | | | When $(C_3A)^E$ is more than 8 % | | <u>3.5</u> | F | <i>F</i> | 4.5
3.0 | F | F | | Loss on ignition, max, % | C114 | 3.0 | 3.0 | | -3.0 | -2.5 | 3.0 | | Loss on ignition, max, % | <u>C114</u> | 3.0 | 3.0
 | 3.0 | 3.0
 | <u>2.5</u>
0.75 | 3.0
 | | Insoluble residue, max, % | C114 | -0.75 | | | | | | | Insoluble residue, max, % | <u>C114</u> | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | | Tricalcium silicate (C ₃ S) ^E , max, % | See Annex A1 | | | | | 35 ^B | | | Tricalcium silicate $(C_3S)^E$, max, % | See Annex A1 | | | | <u></u> | 35 ^C
40 ^B | <u></u> | | Dicalcium silicate (C ₂ S) ^E , min, % | See Annex A1 | | | | | 40 ^B | | | Dicalcium silicate (C ₂ S) ^E , min, % | See Annex A1 | | <u></u> | <u></u> | <u></u> | 40 ^C | | | Tricalcium aluminate (C ₃ A) ^E , max, % | See Annex A1 | | 8- | | 15 — | 7 ^B | 5 <u></u> | | Tricalcium aluminate (C ₃ A) ^E , max, % | See Annex A1 | <u></u> | 8_ | <u>8</u> | 15 | <u>7^C</u> | 5 ^B | | Sum of $C_3S + 4.75C_3A_3^G$, max, % | See Annex A1 | | | 100 ^H | | | | | Sum of $C_3S + 4.75C_3A^G$, max, % | See Annex A1 | | <u></u> | 100 ^H | <u></u> | <u></u> | <u></u> | | Tetracalcium aluminoferrite plus twice the | | | | | | | | | tricalcium aluminate ($C_4AF + 2(C_3A)$), | | | | | | | | | or solid solution (C ₄ AF + C ₂ F), as applicable, max, % | See Annex A1 | | | | | | 25 ^C | | or solid solution ($C_4AF + C_2F$), as applicable, max, % | See Annex A1 | | <u></u> | <u></u> | <u></u> | | 25 ^B | ^ASee Note 2. #### uttps://standards.iteh.ai/catalog/standards/sist/2dbd1ec4-6353-400a-b739-b203362a40cd/astm-c150-c150m-09 # TABLE 2 Optional Composition Requirements^A | Cement Type | Applicable
Test
Method | I and IA | II and IIA | II(MH) and II(MH)A | III and
IIIA | IV | V | Remarks | |---|------------------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|---------------------------------------| | Tricalcium aluminate (C ₃ A) ^B , max, % | See Annex
A1 | | | <u></u> | 8 | | | for moderate
sulfate
resistance | | Tricalcium aluminate $(C_3A)^B$, max, % | See Annex
A1 | | | | 5 | | ••• | for high sulfate resistance | | Equivalent alkalies $(Na_2O + 0.658K_2O)$, max, % | C114 | 0.60 ^C | low-alkali cement | ^AThese optional requirements apply only when specifically requested. Verify availability before ordering. See Note 2. Note 4—The limit on the sum, $C_3S + 4.75C_3A$, in Table 1 provides control on the heat of hydration of the cement and is consistent with a Test Method C186 7-day heat of hydration limit of 335 kJ/kg [80 cal/g]. Note 5—There are cases where performance of a cement is improved with SO₃ in excess of the Table 1 limits in this specification. Test Method C563 is one of several methods a manufacturer can use to evaluate the effect of sulfate content on cement characteristics. Whenever SO₃ content of a cement exceeds Table 1 limits, Test Method C1038 results provide evidence that excessive expansion does not occur at this higher sulfate content. # 7. Physical Properties 7.1 Portland cement of each of the <u>eightten</u> types shown in Section 1 shall conform to the respective standard physical requirements prescribed in Table 3. In addition, optional physical requirements are shown in Table 4. ^BDoes not apply when the heat o sulf hydrate resiestance limit in Table 4 is specified. CDoes not apply when the sulf heate of hydresistationee limit in Table 4 is specified. ^DThit is permissible ar to exceed the vasiues w in ther table foptimum SO₃(uscontent, provided it has been demonstrated by Test Method C561038) for the parti the cular cement wis close to or in excess of the limit in this spee ification. In such cases where properties of a esement can be improved by exceeding the SO₃ twimits stated ill nothis table de, it is velop ermixpanssible ton exceeding 0.020 % at 14 days. Whe vn the mainufacturer supplies cementh under table, his provided sion, support hing data shall be supplied me tons the purchatsed by Tr. Sest Method C1038Note 5 that the cement with the increased SO₃ will not develop expansion in water exceeding 0.020% at 14 days. When the manufacturer supplies cement under this provision, he shall, upon request, supply supporting data to the purchaser. ESee Annex A1 for calculation. FNot applicable. GSee Note 4. ^{r-f}In addition, 7-day heat of hydration testing by Test Method C186 shall be conducted at least once every six months. Such testing shall not be used for acceptance or rejection of the cement, but results shall be reported for informational purposes. ^BSee Annex A1 for calculation. ^CSpecify this limit when the cement is to be used in concrete with aggregates that are potentially reactive and no other provisions have been made to protect the concrete from deleteriously reactive aggregates. Refer to Specification C33 for information on potential reactivity of aggregates. | Requirements | | |--------------|--| | Physical | | | Standard | | | TABLE 3 | | | | | IADLE | s Standar | IABLE 3 Statitudia Filysical nequilements | nednii eilielli | 0 | | | | | | |---|------------------------------|---|---|---|---|---|---|----------------------------------|--------------------------------------|----------------|---------------------------| | Cement Type⁴ | Applicable
Test
Method | nttps://s
- | ΑI | = | HA | <u> (MH)</u> | II(MH)A | ≡ | ₩ | 2 | > | | Air content of mortar, ^B volume %: max min Fineness, ^C specific surface, m²/kg (alternative methods): Turbidimeter test Average value, min ^D Average value, min ^D | C185
C115 | standards.itel | 25
16 | 2 : | 22
16 | 1 :1 | 16
 16 | 2 : | 25
16 | : 12 | 2 : | | min — Any one sample, min ^E — Any one sample, min ^E — Any one sample, max ^E — Average value, min ^D Any one sample, Average value, value | 160 – C204 | n.ai/catalog/standar
\$ \frac{9}{2} \frac{9}{2} \frac{1}{2} \frac\ | 150 1 |
150
240 ^E
240 ^E
245 ^E
245 ^E |
150
240 ^E
240 ^E
245 ^E | 9 9 11 11 11 11 11 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 240
240
245
245
245 | 1150 | | | | min — Any one sample, min E — Any one sample, min E — Any one sample, max E — Any one sample, max E Any one sample, max E Any one sample, max Setrogth, not less than the values shown for the ages — indicated as follows: 9 Strength, not less than the values shown for the ages | -289- | ds/sist/2dbd1ec4-635 | 88 08 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 980 | 2880
 | 260
429
429
430
6.80 | 0:80 | 0.80 | 0.80 | | indicated as follows: E — Compressive strength, MPa (psi): Compressive strength, MPa [psi]: | C109M
C109/
C109/ | 3-400a-b7 | 150M-09 | rds.i
Prev | dard | 1 | 1 | q
q | 9 | 1 | ı | | T da <u>y</u> | | 739-bi
: :I | : : | itel | S :1 | : : | : : | (4740)
12.0
1740] | (1450)
10.0
1450] | : : | : : | | - 3 days | | 203362
(1740) | 10.0 (1450) | 10.0 (1450)] | 8:0
[1160] | 10.0
[1450]
7.0 ^H
(1020) ^H | 8.0
(1160)
6.0 ^H
(870) ^H | 24.0
(3480) | 19.0
(2760) | li: | 8.0
(1160) | | 3 days | | .40cd/
 | 10.0 | 10.0 | 8.0
[1160] | 10.0
[1450]
7.0 ⁶ | (37.5)
8.0
[1160]
6.0 ^F | 24.0
[3480] | 19.0
[2760] | i | 8.0
[1160] | | — 7 days | | astm-c l
0:61 | 16.0
(2320) | 47.0
(2470)] | 14.0
[2030] | 1020]
47.0
<u>12.0^H</u>
17.40) ^H | (2030)
(2030)
9.0 ^H
(1310) ^H | li: | l: | 7.0
(1020) | 15.0
(2180) | | 7 days | | 19.0
[2760]
-012 | 16.0
[2320] | 17.0
[2470] | 14.0
[2030] | $\frac{17.0}{[2470]}$ $\frac{12.0}{12.0^{F}}$ | (13.0)
14.0
[2030]
9.0 ^F
[1310] ^F | : | : | 7.0
[1020] | 15.0
[2180] | | — 28 days | | 0m-(| l: | Į: | Į: | . j: | . : | Į: | l: | 47.0
(2470) | 21.0
(3050) | | 28 days | | 09
::I | : | : | : | : | : | : | ÷ | 17.0
[2470] | 21.0
[3050] | | Hime of setting. Vicat test: Time of setting, min, not less than Time of setting, min, not more than | C191 | 45
375 #### TABLE 4 Optional Physical Requirements^A | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | . • • • • • • • • • • • • • • • • • • • | , | ii iicqaiicii | | | | | | |--|---|---|---------------------------------------|--|--|-------------|-------------|----------------------------------|-------------| | Cement Type | Applicable
Test Method | l <u>and</u>
<u>II</u> | IA and IIA | II <u>(MH)</u> | II <u>(MH)</u> A | III | IIIA | IV | V | | False set, final penetration, min, % | C451 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | | Heat of hydration: | C186 | | | | | | | | | | 7 days, max, kJ/kg (cal/g) | | | | -290 (70)^B | -290 (70)^B | | | -250 (60)^C | | | - 28 days, max, kJ/kg (cal/g) | | | | | | | | -290 (70) | | | 7 days, max, kJ/kg [cal/g] | | <u></u> | <u></u> | 290 [70] ^B | 290 [70] ^B | <u></u> | <u></u> | _250 [60] ^C | <u></u> | | 28 days, max, kJ/kg [cal/g] | | <u></u> | <u></u> | | | <u></u> | <u></u> | 290 [70] ^C | <u></u> | | Strength, not less than the values shown: | | | | | | | | | | | Compressive strength, MPa (psi) | C109/ | | | | | | | | | | Compressive strength, MPa [psi] | C109M
<u>C109/</u>
C109M | | | | | | | | | | 28 days | | 28.0
-(4060) | 22.0
-(3190) | -28.0
-(4060)
-22.0 ^B
-(3190) ^B | -22.0
-(3190)
-18.0 ^B
-(2610) ^B | | | | | | 28 days | | <u>28.0</u>
[4060] | <u>22.0</u>
[3190] | 28.0
[4060]
22.0 ^B
[3190] ^B | 22.0
[3190]
18.0 ^B
[2610] ^B | <u></u> | <u></u> | | <u></u> | | Sulfate resistance, ^D 14 days, max, % expansion | C452 | | | <u>E</u> | <u>E</u> | | | | -0.040 | | Sulfate resistance, 14 days, max, % expansion | C452 | <i>E</i> | E | <i>E</i> | <i>E</i> | <u></u> | <u></u> | | 0.040 | | Gillmore test: | C266 | | | · | | | _ | | | | Initial set, min, not less than | | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | | Final set, min, not more than | | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | AThese optional requirements apply only when specifically requested. Verify availability before ordering. See Note 2. # 8. Sampling - 8.1 When the purchaser desires that the cement be sampled and tested to verify compliance with this specification, perform sampling and testing in accordance with Practice C183. - 8.2 Practice C183 is not designed for manufacturing quality control and is not required for manufacturer's certification. # 9. Test Methods - 9.1 Determine the applicable properties enumerated in this specification in accordance with the following test methods: - 9.1.1 Air Content of Mortar—Test Method C185. - 9.1.2 Chemical Analysis—Test Methods C114. - 9.1.3 Strength—Test Method C109/C109M. - 9.1.4 False Set—Test Method C451. - 9.1.5 Fineness by Air Permeability—Test Method C204. - 9.1.6 Fineness by Turbidimeter—Test Method C115. - 9.1.7 Heat of Hydration—Test Method C186. - 9.1.8 Autoclave Expansion—Test Method C151. - 9.1.9 Time of Setting by Gillmore Needles—Test Method C266. - 9.1.10 Time of Setting by Vicat Needles—Test Method C191. - 9.1.11 Sulfate Resistance—Test Method C452 (sulfate expansion). - 9.1.12 Calcium Sulfate (expansion of) Mortar—Test Method C1038. - 9.1.13*Optimum SO*₃—Test Method C563. ### 10. Inspection 10.1 Inspection of the material shall be made as agreed upon between the purchaser and the seller as part of the purchase contract. # 11. Rejection - 11.1 The cement shall be rejected if it fails to meet any of the requirements of this specification. - 11.2 At the option of the purchaser, retest, before using, cement remaining in bulk storage for more than 6 months or cement in bags in local storage in the custody of a vendor for more than 3 months after completion of tests and reject the cement if it fails to conform to any of the requirements of this specification. Cement so rejected shall be the responsibility of the owner of record at the time of resampling for retest. ^BThe limit for the sum of C₃S + 4.75C₃Å in Table 1 shall not apply when this optional limit is requested. These strength requirements apply when the optional heat of hydration requirement is requested. When the heat of hydration limit is specified, it shall be instead of the limits of C₃S, C₂S, C₃A, and Fe₂O₃ listed in Table 1. When the sulfate resistance is specified, it shall be instead of the limits of C₃A, C₄AF + 2 C₃A, and Fe₂O₃ listed in Table 1. ECement meeting the high sulfate resistance limit for Type V is deemed to meet the moderate sulfate resistance requirement of Type II and Type III(MH). 11.3 Packages shall identify the mass contained as net weight. At the option of the purchaser, packages more than 2 % below the mass marked thereon shall be rejected and if the average mass of packages in any shipment, as shown by determining the mass of 50 packages selected at random, is less than that marked on the packages, the entire shipment shall be rejected. #### 12. Manufacturer's Statement - 12.1 At the request of the purchaser, the manufacturer shall state in writing the nature, amount, and identity of any air-entraining addition and of any processing addition used, and also, if requested, shall supply test data showing compliance of such air-entraining addition with Specification C226 and of such processing addition with Specification C465. - 12.2 When limestone is used, the manufacturer shall state in writing the amount thereof and, if requested by the purchaser, shall supply comparative test data on chemical and physical properties of the cement with and without the limestone (See Note 5Note 6). The comparative tests do not supersede the normal testing to confirm that the cement meets chemical and physical requirements of this standard. The amount of limestone in cement shall be determined in accordance with Annex A2. - Note 56—Comparative test data may be from qualification tests performed by the manufacturer during formulation of the cement with limestone. # 13. Packaging and Package Marking 13.1 When the cement is delivered in packages, the words "Portland Cement," the type of cement, the name and brand of the manufacturer, and the mass of the cement contained therein shall be plainly marked on each package. When the cement is an air-entraining type, the words "air-entraining" shall be plainly marked on each package. Similar information shall be provided in the shipping documents accompanying the shipment of packaged or bulk cement. All packages shall be in good condition at the time of inspection. Note6—With 7—With the change to SI units, it is desirable to establish a standard SI package for portland cements. To that end 42 kg (92.6 lb)[92.6 lb] provides a convenient, even-numbered mass reasonably similar to the traditional 94-lb (42.6 kg)[42.6 kg] package. # 14. Storage 14.1 The cement shall be stored in such a manner as to permit easy access for proper inspection and identification of each shipment, and in a suitable weather-tight building that will protect the cement from dampness and minimize warehouse set. ### 15. Manufacturer's Certification - 15.1 Upon request of the purchaser in the contract or order, a manufacturer's report shall be furnished at the time of shipment stating the results of tests made on samples of the material taken during production or transfer and certifying that the cement conforms to applicable requirements of this specification. - Note 78—Guidance on preparing the manufacturer's report is provided in Appendix X1. # 16. Keywords 16.1 hydraulic cement; portland cement; specification #### **ANNEXES** (Mandatory Information) ### A1. CALCULATION OF POTENTIAL CEMENT PHASE COMPOSITION - A1.1 All values calculated as described in this annex shall be rounded according to Practice E29. When evaluating conformance to a specification, round values to the same number of places as the corresponding table entry before making comparisons. The expressing of chemical limitations by means of calculated assumed phases does not necessarily mean that the oxides are actually or entirely present as such phases. - A1.2 When expressing phases, C = CaO, $S = SiO_2$, $A = Al_2O_3$, $F = Fe_2O_3$. For example, $C_3A = 3CaO \cdot Al_2O_3$. Titanium dioxide and phosphorus pentoxide (TiO 2 and P_2O_5) shall not be included with the Al_2O_3 content. See Note A1.1. - Note A1.1—When comparing oxide analyses and calculated phases from different sources or from different historic times, be aware that they may not have been reported on exactly the same basis. Chemical data obtained by Reference and Alternate Test Methods of Test Methods C114 (wet chemistry) may include titania and phosphorus as alumina unless proper correction has been made (see Test Methods C114), while data obtained by rapid instrumental methods usually do not. This can result in small differences in the calculated phases. Such differences are usually within the precision of the analytical methods, even when the methods are properly qualified under the requirements of Test Methods C114. - A1.3 When the ratio of percentages of aluminum oxide to ferric oxide is 0.64 or more, the percentages of tricalcium silicate, dicalcium silicate, tricalcium aluminate, and tetracalcium aluminoferrite shall be calculated from the chemical analysis as follows: Tricalcium silicate $$(C_3S) = (4.071 \times \% \text{ CaO}) - (7.600 \times \% \text{ SiO}_2) - (6.718 \times \% \text{ Al}_2O_3) - (1.430 \times \% \text{ Fe}_2O_3)$$