INTERNATIONAL STANDARD

Third edition 2017-03

Rubber compounding ingredients — Carbon black — Determination of aggregate size distribution by disc centrifuge photosedimentometry

Ingrédients de mélange de caoutchouc — Noir de carbone — Détermination de la distribution dimensionnelle des agrégats par **iTeh ST**photosédimentométrie avec centrifugeuse à disque

(standards.iteh.ai)

<u>ISO 15825:2017</u> https://standards.iteh.ai/catalog/standards/sist/0a960333-4b8c-46a0-9428b5f1c2ad5c33/iso-15825-2017

Reference number ISO 15825:2017(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 15825:2017</u> https://standards.iteh.ai/catalog/standards/sist/0a960333-4b8c-46a0-9428b5f1c2ad5c33/iso-15825-2017

© ISO 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Forew	ord	iv
1	Scope	1
2	Normative references	1
3	Terms and definitions3.1General terms3.2Terms concerning aggregate dimensions	1 1 2
4	Significance and use	3
5	Apparatus	4
6	Reagents and materials	4
7	Sampling	5
8	Calibration	5
9	Preparation of test sample	5
10	Computer and software setup	5
11	Initiation of procedure	6
12	Test report	7
Annex	A (informative) Example of a mass distribution curve	8
Annex	B (informative) Precision	9
Biblio	graphy	11

<u>ISO 15825:2017</u> https://standards.iteh.ai/catalog/standards/sist/0a960333-4b8c-46a0-9428b5f1c2ad5c33/iso-15825-2017

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html

This document was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 3, *Raw materials (including latex) for use in the rubber industry*.

This third edition cancels and replaces the second/edition (ISO 15825:2015) which has been technically revised: b5flc2ad5c33/iso-15825-2017

- to correct <u>Figure A.1</u>;
- to update the precision data in <u>Annex B</u> following a new interlaboratory trial programme (ITP) conducted in 2015 and 2016.

Rubber compounding ingredients — Carbon black — Determination of aggregate size distribution by disc centrifuge photosedimentometry

1 Scope

This document specifies a method for determining the size distribution of carbon black aggregates, using a disc centrifuge photosedimentometer. This technique is based on the hydrodynamic behaviour of carbon black in a centrifugal field. The determination of the aggregate size distribution is important in the evaluation of carbon black used in the rubber industry.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1124, Rubber compounding ingredients — Carbon black shipment sampling procedures

ISO 3696, Water for analytical laboratory use - Specification and test methods

(standards.iteh.ai)

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at <u>http://www.iso.org/obp</u>

3.1 General terms

3.1.1

carbon black aggregate

discrete, rigid colloidal entity that is the smallest dispersible unit in a suspension

Note 1 to entry: It is composed of extensively coalesced particles.

3.1.2 spin fluid

inert liquid injected into the disc prior to the sample, through which aggregates sediment

Note 1 to entry: Alkaline conditions minimize agglomeration of dispersed aggregates in most cases.

3.1.3 dispersion fluid

liquid in which aggregates are dispersed

3.1.4

Stokes equation

mathematical description of the sedimentation of a spherical particle:

$$D_{\rm st} = \sqrt{\frac{1.8 \times 10^{16} \eta \ln\left(\frac{R}{S}\right)}{\left(\rho_1 - \rho_2\right) \omega^2 t}}$$

where

*D*_{st} is the Stokes diameter (nm);

- η is the viscosity of the spin fluid (Pa·s);
- *R* is the distance of the photodetector from the centre of rotation (cm);
- *S* is the distance of the air-liquid interface from the centre of rotation (cm);
- *t* is the time of centrifugation (s);
- ρ_1 is the density of the carbon black (Mg/m³);
- ρ_2 is the density of the spin fluid (Mg/m³);
- ω is the rotational velocity (rad/s). ANDARD PREVIEW

3.1.5

(standards.iteh.ai)

particle density

density of the aggregate in Mg/m³

ISO 15825:2017

Note 1 to entry: For carbon black//1;86×10³kg/m³/(1;86g/cm³)is used as a typical valuesb5flc2ad5c33/iso-15825-2017

3.2 Terms concerning aggregate dimensions

3.2.1

Stokes diameter

D_{st}

diameter of a sphere which sediments in a viscous medium in a centrifugal or gravitational field according to the Stokes equation

Note 1 to entry: A non-spherical object, such as a carbon black aggregate, may also be represented in terms of an equivalent Stokes diameter if it is considered as behaving as a smooth, rigid sphere of the same density and with the same sedimentation rate as the object.

Note 2 to entry: For carbon black, Stokes diameter is expressed in nanometres (nm).

3.2.2 mean diameter average diameter

D_{mean}

average diameter calculated from the differential mass distribution curve

Note 1 to entry: It represents the first moment of the differential distribution.

Note 2 to entry: In the software of the Brookhaven disc centrifuge the mass distribution is called "Volume (Mass)" and mean diameter is reported as "Mean".

Note 3 to entry: D_{mean} is used for reporting purposes only.

3.2.3

median

 D_{50}

x-value of the point on the mass distribution curve at which 50 % by mass of the test sample is larger and 50 % by mass of the test sample is smaller

Note 1 to entry: It represents the median value of the distribution.

Note 2 to entry: In the software of the Brookhaven disc centrifuge the median Stokes diameter is reported as "d50".

Note 3 to entry: D_{50} is used for reporting purposes only.

3.2.4

mode

D_{mode}

value at which the most frequent diameter occurrence is observed, which is portrayed as a peak in the distribution curve

Note 1 to entry: In some cases, there may be more than one mode indicated.

Note 2 to entry: D_{mode} is used for reporting purposes only.

3.2.5

lower quartile

x-value of the point on the mass distribution curve at which 75 % of the sample is larger, and 25 % smaller

iTeh STANDARD PREVIEW

upper quartile

x-value of the point on the mass distribution curve at which 78 % of the sample is smaller, and 25 % larger

3.2.7

3.2.6

quartile ratio ratio of upper quartile to lower quartile b511c2ad5c33/iso-15825-2017

Note 1 to entry: In the software of the Brookhaven disc centrifuge the quartile ratio is reported as "d75/d25".

3.2.8

Δ**D-50**

width of the plot of the mass distribution measured at the half-maximum point of the mode, which is a measure of the breadth of the aggregate size distribution

Note 1 to entry: In the software of the Brookhaven disc centrifuge ΔD 50 is reported as "FWHM" (full width at half maximum).

4 Significance and use

Disc centrifuge photosedimentometry produces a rapid mass-differential aggregate size distribution, by continuously measuring the solution turbidity as a function of centrifugation time. In order to obtain a true mass distribution, a light scattering correction shall be applied.

An example of a mass distribution curve is given in <u>Annex A</u>.

5 Apparatus

5.1 Disc centrifuge photosedimentometer (DCP)¹⁾, capable of rotational speeds of 1 000 r/min to 11 000 r/min or greater, with integral spin feed-back control (accuracy and stability of rotational speed better than \pm 0,05 %), spin fluid volume from 10 cm³ to 20 cm³, stable temperature of spin fluid, stroboscope to monitor the rotating disc both for stability and streaming anomalies, and an appropriate optical turbidity measuring device.

5.2 Energy meter, capable of measuring the energy consumption (in kWh) of the probe-type sonicator.

The energy meter is inserted between an electrical plug of the laboratory and the plug of the power supply cord of the sonicator. The actual energy consumption is indicated on a digital display.

5.3 Probe-type sonicator², typically with a nominal power of 200 W or more.

The sonicator should be capable of providing a measured power consumption of at least 60 W. This has been found to be an effective means of dispersing carbon black into discrete aggregates. See <u>Clause 8</u> for further details.

NOTE Cylindrical tips with 12,7 mm (1/2 inch) diameter have been found to be suitable.

6 Reagents and materials

Unless otherwise stated, use only reagents of recognized reagent grade³. C

- 6.1 Water, distilled or deionized, grade 3 as defined in 180 3696. ai)
- 6.2 Ethanol, absolute. <u>ISO 15825:2017</u> https://standards.iteh.ai/catalog/standards/sist/0a960333-4b8c-46a0-9428-

6.3 Surfactant, non-ionic type⁴⁾, 0,02 % to 0,05 % (by mass) solution.

6.4 Dodecane, \geq 98 % purity (GC grade).

6.5 Spin fluid: Water (<u>6.1</u>) containing surfactant (<u>6.3</u>) which may be adjusted to pH 9,0 to pH 10,0 using 0,1 mol/dm³ NaOH.

6.6 Dispersion fluid: A solution of 20 cm³ of ethanol ($\underline{6.2}$) and 80 cm³ of water ($\underline{6.1}$) containing a surfactant ($\underline{6.3}$). The solution may be adjusted to a pH value between 9,0 and pH 10,0 using 0,1 mol/dm³ NaOH.

¹⁾ BI-DCP Particle Sizer is available from Brookhaven Instruments Corporation, 750 Blue Point Rd., Holtsville, NY 11742, USA, <u>www.brookhaveninstruments.com</u>. Joyce Loebl DCF 4 is no longer available. It is an example of a suitable product available commercially. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of these products.

²⁾ Sonoplus 2220, equipped with Sonotrode UW 2200 and horn DH 13 G, is available from BANDELIN electronic GmbH & Co. KG, Heinrichstraße 3-4, D-12207 Berlin, <u>www.bandelin.com</u>. It is an example of a suitable product available commercially. This information is given for the convenience of users of this documentand does not constitute an endorsement by ISO of this product.

³⁾ *Reagent Chemicals: American Chemical Society Specifications*, American Chemical Society, Washington DC, USA. For suggestions on the testing of reagents not listed by the American Chemical Society, see *Reagent Chemicals and Standards*, by Joseph Rosin, D. Van Nostrand Co., Inc., New York, NY, USA, and the *United States Pharmacopoeia*.

⁴⁾ Nonidet P-40, from Shell Chemicals, has been found suitable for this application. This information is given for the convenience of users of this documentand does not constitute an endorsement by ISO of the product named. Any other equivalent non-ionic type of surfactant may be used.

7 Sampling

Select carbon black samples from larger-sized lots at random, in either pelletized or non-pelletized form, in accordance with ISO 1124. Label and retain samples for storage or further analysis.

8 Calibration

8.1 The following procedure shall ensure that carbon black agglomerates are completely dispersed into aggregates.

8.2 Prepare a sample of ITRB (or ITRB–2) following the instructions in <u>Clause 9</u>.

8.3 Select sonication energy and sonication mode (e.g. pulsed mode) in such way that 0,005 kWh (18 kJ) are applied. This can typically be achieved by a power of 60 W and a sonication time of 5 min.

8.4 Start sonication and press on start button of the energy-meter, which is plugged in between supply plug and plug of the power cord of the sonicator.

8.5 Stop sonication after 5 min, press stop button on energy-meter and read energy consumption, expressed in kWh.

8.6 If the ITRB or ITRB-2 is entirely dispersed it will give a mean Stokes diameter ("Mean") of $105 \text{ nm} \pm 5 \text{ nm}$ (99 nm $\pm 5 \text{ nm}$ for ITRB-2).

8.7 Test ITRB or ITRB-2 as a standard carbon black on a regular basis before testing actual samples.

8.8 If the value of the standard is too high increase sonication time and/or power or change the tip of the sonicator. b5flc2ad5c33/iso-15825-2017

NOTE The tips of the sonicator are consumed with time.

9 Preparation of test sample

9.1 Weigh 20 mg of carbon black in a weighing vessel.

If the software cannot handle high turbidity values, reduce the sample mass.

9.2 Add to 20 cm^3 of dispersion fluid (<u>6.6</u>).

9.3 Disperse with ultrasonic energy for the time found during calibration (Clause 8), with the dispersing container immersed in a cooling medium, such as iced water, to minimize the heating effect of the sonic energy during sonication. The temperature of the test sample shall be approximately the same as ambient temperature, to minimize thermal gradients in the disc.

Test samples shall be subjected to further sonication if there is any indication of streaming, or more than 1 h has elapsed since sonication.

10 Computer and software setup

Input the appropriate parameters.

- a) File name.
- b) Sample designation.