INTERNATIONAL STANDARD

Second edition 2016-08-01

Rubber and rubber products — Determination of the composition of vulcanizates and uncured compounds by thermogravimetry —

Part 2: **Acrylonitrile-butadiene and** halobutyl rubbers

(standardš.iteh.ai) Caoutchouc et produits à base de caoutchouc — Détermination de la <u>composition de</u>s vulcanisats et mélanges non vulcanisés par https://standards.iteh.thermogravimétrie.a79a56f8-13c0-42c6-b3cf-

Partie 2: Caoutchoucs acrylonitrile-butadiène et butyl halogéné

Reference number ISO 9924-2:2016(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9924-2:2016</u> https://standards.iteh.ai/catalog/standards/sist/a79a56f8-13c0-42c6-b3cf-8b76cb7daccd/iso-9924-2-2016

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Foreword			
1	Scope 1		
2	Normative references 1		
3	Principle 2		
4	Reagents 2		
5	Apparatus 2		
6	Thermogravimetric analyser checks		
7	Procedure 4		
8	Expression of results 5		
9	Precision 9		
10	Test report 9		
Annex A (informative) Precision 10			

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9924-2:2016</u> https://standards.iteh.ai/catalog/standards/sist/a79a56f8-13c0-42c6-b3cf-8b76cb7daccd/iso-9924-2-2016

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: <u>www.iso.org/iso/foreword.html</u>.

The committee responsible for this document is ISO/TC 45, *Rubber and rubber products*, SC 2, *Testing and analysis*.

ISO 9924-2:2016

This second edition cancels and replaces the first edition (ISO 9924-2:2000), of which it constitutes a minor revision. It also incorporates the amendment ISO 9924-2:2000/Amd 1:2012. The following changes have been made:

— precision clause moved to <u>Annex A</u>.

ISO 9924 consists of the following parts, under the general title *Rubber and rubber products* — *Determination of the composition of vulcanizates and uncured compounds by thermogravimetry*:

- Part 1: Butadiene, ethylene-propylene copolymer and terpolymer, isobutene-isoprene, isoprene and styrene-butadiene rubbers
- Part 2: Acrylonitrile-butadiene and halobutyl rubbers
- Part 3: Hydrocarbon rubbers, halogenated rubbers and polysiloxane rubbers after extraction

Rubber and rubber products — Determination of the composition of vulcanizates and uncured compounds by thermogravimetry —

Part 2: Acrylonitrile-butadiene and halobutyl rubbers

WARNING — Persons using this part of ISO 9924 should be familiar with normal laboratory practice. This part of ISO 9924 does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

1 Scope

1.1 This part of ISO 9924 specifies a thermogravimetric method for the determination of the total organic content, carbon black content, carbonaceous residue and ash in vulcanizates and uncured compounds containing polymers which form a carbonaceous residue on pyrolysis (see 1.2). The loss in mass at around 300 °C is an approximate guide to the volatile-matter content of the compound.

The method is suitable for the analysis of rubber compounds and vulcanizates containing the 1.2 hydrocarbon polymers covered by ISO 9924-1 plus the following copolymers with polar groups which form a carbonaceous residue on pyrolysis SO 9924-2:2016

- a)
- b) carboxylated acrylonitrile-butadiene copolymers (XNBRs);
- c) hydrogenated acrylonitrile-butadiene copolymers (HNBRs);
- d) chlorinated isobutylene-isoprene copolymers (CIIRs);
- brominated isobutylene-isoprene copolymers (BIIRs). e)

The field of application of the method may be extended to include the analysis of compounds NOTE 1 containing rubbers different from those given in this subclause, provided that the applicability of the method is tested beforehand using known compounds or vulcanizates having similar composition.

The method is not suitable for compounds containing mineral fillers, such as carbonates or hydrated NOTE 2 aluminium oxides, which decompose in the temperature range from 25 °C to 800 °C, unless suitable corrections based on prior knowledge of filler behaviour can be made.

NOTE 3 The method is not suitable for the determination of the total polymer content of compounds containing non-rubber organic ingredients that cannot be completely removed by solvent extraction carried out in accordance with ISO 1407.

Normative references 2

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1407, Rubber — Determination of solvent extract

3 Principle

3.1 A weighed test portion is heated, following a pre-set programme, from 40 °C to 600 °C in a stream of nitrogen until all the organic material is pyrolysed. If nitrile-butadiene copolymers are present, a small amount of the polymer will be pyrolysed to form a carbonaceous residue that has to be determined in order to obtain the correct total organic content.

3.2 For this purpose, the oven temperature is decreased to 400 °C in a stream of nitrogen and maintained at 400 °C for 5 min. The gas stream is then changed from nitrogen to air or oxygen and the oven temperature raised slowly to 800 °C. During this heating in an oxidizing atmosphere, two distinct losses in mass occur due to combustion. The first is due to the combustion of the carbonaceous residue, and the amount is determined and added to the previously determined loss in nitrogen at 600 °C to obtain the correct value of the total organic content. The second is due to the normal combustion of the carbon black.

NOTE The total rubber content is calculated by subtracting the value of the solvent extract, determined in accordance with ISO 1407, from the total organic content, provided that all non-rubber ingredients can be extracted.

3.3 The mass of the residue at 800 °C represents the ash.

4 Reagents

4.1 Dry nitrogen, with an oxygen content of less than 10 mg/kg (ppm). (standards.iteh.ai)

4.2 Dry air or oxygen.

5 Apparatus

<u>ISO 9924-2:2016</u> https://standards.iteh.ai/catalog/standards/sist/a79a56f8-13c0-42c6-b3cf-8b76cb7daccd/iso-9924-2-2016

5.1 Thermogravimetric analyser.

There are many types of analyser commercially available. All should be suitable for use with this part of ISO 9924, but their suitability should be checked using the procedure in <u>Clause 6</u>. Calibrate and operate the thermogravimetric analyser in accordance with the manufacturer's instructions.

The basic components of an analyser are as follows.

5.1.1 Thermogravimetric balance.

5.1.2 Electrically heated, thermo-regulated oven.

5.1.3 Temperature programmer, for the oven.

5.1.4 Switching device, allowing either a stream of nitrogen or, alternatively, a stream of air or oxygen to flow through the oven at a predetermined and constant flow rate.

5.1.5 X/Y recorder, for recording the temperature/mass plot. Alternatively, temperature/time and mass/time plots may be recorded simultaneously using a two-pen Y/T recorder. Digital data acquisition stations with related software for drawing the temperature/mass and/or time/mass curves are also suitable; in this case, better accuracy in the calculation of the mass losses can be achieved.

5.1.6 Auxiliary equipment for producing differential curves (mandatory for this part of ISO 9924).

5.1.7 Analytical balance, capable of weighing to 0,1 mg.

6 Thermogravimetric analyser checks

6.1 Measurement of purge time, *t*_p

6.1.1 Place a test portion of carbon black or black-filled rubber, as specified in the manufacturer's instructions, in the thermobalance sample pan and heat to 650 °C in a stream of nitrogen, at the maximum rate allowed by the temperature programmer.

6.1.2 Maintaining the temperature at 650 °C, introduce air or oxygen and allow the test portion to combust fully.

6.1.3 When there is no further mass change, switch off the oven heater and allow the oven to cool to room temperature, maintaining the air or oxygen flow. At this point, the oven will have been thoroughly purged with air or oxygen. The following operations are designed to determine the time, t_p , required to completely restore the inert atmosphere of nitrogen.

6.1.4 With the oven at 25 °C \pm 5 °C, introduce a fresh test portion of carbon black, of mass as specified in the manufacturer's instructions, into the balance pan and close the apparatus.

6.1.5 Record the time, t_1 , switch over to nitrogen gas flow, set the oven temperature to increase to 650 °C at a rate of 10 °C/min and then hold the temperature constant.

standards.iteh.ai)

6.1.6 Observe the thermogravimetric analyser mass trace and, when this no longer indicates a mass loss with time, note the time, t_2 . ISO 9924-2:2016

As a check, the pan should still contain carbon black since the mass loss should be constant if not all the carbon black has burned off during the heating time.

6.1.7 The purge time, t_p , which is the time required to purge all oxygen from the system, is given by Formula (1):

 $t_{\rm p} = t_2 - t_1$

(1)

6.2 Discrimination between carbon black and calcium carbonate

6.2.1 Calcium carbonate will decompose to calcium oxide when heated to 800 °C. Carbon black is thermally stable up to this temperature in a nitrogen atmosphere. In air or oxygen, however, carbon black will be oxidized to carbon dioxide at 800 °C.

6.2.2 Provided that nitrogen having a low enough concentration of oxygen is used, that purging is carried out for a time greater than the purge time determined in <u>6.1</u>, that there are no leaks in the apparatus, and that the oven design and gas flow rate ensure that all carbon dioxide is swept out from the sample chamber, there should be no problem in distinguishing between, and measuring separately, black and whiting (calcium carbonate). To check the operation of the thermogravimetric analyser, carry out the following procedure.

6.2.3 Grind together equal (to within 1 %) masses of analytical-grade calcium carbonate and the purest grade of carbon black available.

6.2.4 Purge the apparatus with nitrogen for 10 min beyond the purge time, *t*_p.

6.2.5 Switch on the recorder and set the oven temperature to $25 \degree C \pm 5 \degree C$.

6.2.6 Into the thermogravimetric analyser balance pan, introduce a mass of the carbon black/calcium carbonate mixture (see 6.2.3) as specified in the manufacturer's instructions.

6.2.7 Close the apparatus and purge with a stream of nitrogen at a constant and predetermined flow rate which is in agreement with the manufacturer's instructions. Continue purging with nitrogen for a time which is greater than the purge time, t_p (see <u>6.1</u>).

6.2.8 Raise the oven temperature to 800 °C at a rate of 10 °C/min.

6.2.9 Maintain the oven temperature at 800 °C until the mass indicated on the mass/temperature (or mass/time) plot is constant, then lower the temperature to 300 °C.

6.2.10 Switch from the stream of nitrogen to a stream of air or oxygen. Adjust the total flow rate of the gas flowing through the apparatus so that there is no discernible change in the apparent mass of the sample. This procedure corrects for changes in buoyancy of the balance pan and test portion in gases of different density.

6.2.11 Raise the oven temperature to 800 °C as rapidly as possible and maintain it at this temperature for 15 min or until the mass indicated on the plot is constant.

6.2.12 Switch off the oven heater and replace the stream of air or oxygen by a stream of pure nitrogen. Switch off the recorder and empty the ash residue from the balance pan. The apparatus is now ready for the next test portion.

6.2.13 Determine the ratio, *R*, of the mass changes in the two different atmospheres using Formula (2):

	https://standards.iteh.ai/catalog/standards/sist/a79a56t8-13c0-42c6-b3cf-	
$R = \frac{\Delta m_1}{1}$	8b76cb7daccd/iso-9924-2-2016	(2)
Δm_2		(-)

where

- Δm_1 is the loss in mass (or the height of the corresponding chart step) in the atmosphere of nitrogen;
- Δm_2 is the loss in mass (or the height of the corresponding chart step) in the atmosphere of air or oxygen.

6.2.14 The value of *R* should be $0,44 \pm 0,022$. If this condition is satisfied, the apparatus is functioning satisfactorily.

7 Procedure

7.1 Switch on the balance and the recorder and set the oven to 40 $^{\circ}$ C.

7.2 Weigh a test portion of thinly sheeted test sample to the nearest 0,1 mg into the thermobalance. The mass taken should preferably be in agreement with the manufacturer's instructions, but will commonly be in the range 4 mg to 10 mg.

NOTE In some types of apparatus, it is possible to set the recorder to 100 % after inserting the test portion. In this case, accurate pre-weighing is unnecessary.

7.3 Close the apparatus and purge with a stream of nitrogen at a constant and pre-determined flow rate which is in agreement with the manufacturer's instructions. Continue purging with nitrogen for a time greater than the purge time, t_p (see <u>6.1</u>).

NOTE The presence of trace amounts of air or oxygen in the apparatus during heating under nitrogen will lead to erroneous results, and it will not be possible to obtain a constant mass during heating of black-filled materials at 600 $^{\circ}$ C. To minimize the purge time, it is advisable to maintain a stream of nitrogen through the apparatus even when it is not in use.

7.4 Raise the oven temperature to 600 °C at a rate of 20 °C/min with a nitrogen atmosphere. When the temperature of 600 °C is reached, the polymer should be completely pyrolysed and the mass indicated on the mass/temperature plot should be constant. If not, maintain the temperature at 600 °C until the mass indicated is constant.

7.5 Cool the oven from 600 °C to 400 °C with a nitrogen atmosphere and allow the oven to equilibrate at 400 °C for 5 min.

7.6 Switch from the stream of nitrogen to a stream of air or oxygen. Adjust the total rate of gas flow through the apparatus so that there is no discernible change in the apparent mass of the sample in order to correct for changes in buoyancy.

7.7 Raise the oven temperature from 400 °C to 800 °C at a rate of 10 °C/min.

7.8 Maintain the oven temperature at 800 °C for 5 min or until the mass is constant.

7.9 Switch off the oven heater and replace the stream of air or oxygen by a stream of pure nitrogen. Switch off the recorder and check the colour of the ash in the balance pan.

<u>ISO 9924-2:2016</u>

8 Expression of results 8b76cb7daccd/iso-9924-2-2016

8.1 Recordings

Make two different types of recording to enable the necessary calculations to be made:

a) a plot of the percentage loss in mass (mass %) vs. temperature (curve 1 in Figure 1);

b) a derivative plot, $\frac{d(mass\%)}{dT}$ (curve 2 in Figure 1).

These will be used to obtain the contents of the various compounding ingredients.

NOTE Figure 1 was obtained from the analysis of an acrylonitrile-butadiene copolymer containing 33 % by mass of acrylonitrile. A carbonaceous residue due to pyrolysis of the NBR in nitrogen is revealed at the beginning of pyrolysis in an oxidative atmosphere.

8.2 Approximate determination of plasticizers and non-rubber organic compounds

8.2.1 The first peak in the derivative curve (point A in Figure 1) corresponds to the maximum rate of pyrolysis and volatilization of the volatile ingredients, mainly plasticizers and non-rubber organic compounds, in nitrogen. When the trough following this peak is reached (point B), pyrolysis of these ingredients is complete.

8.2.2 Transfer from point B on the derivative curve (curve 2) to point B' vertically above it on the main curve (curve 1). When necessary, allow for any shift in origin between the two curves. Read off the percentage loss in mass corresponding to that point. The difference between this reading and 100 % (P1) corresponds to the volatile-matter content, plasticizer included, expressed as a percentage by mass.