

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEXCHAPOCHAR OPTAHUSALUR TO CTAHCAPTUSALUR ORGANISATION INTERNATIONALE DE NORMALISATION

Photography – Light sources for use in sensitometric exposure – Simulation of the spectral distribution of daylight

Descriptors : photography, light sources, sensitometers, spectral energy distribution, simulation, sunlight.

FOREWORD

.

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 2239 was edrawn Tup by Pechnical Committee VIEW ISO/TC 42, Photography. (standards.iteh.ai)

It was approved in September 1971 by the Member Bodies of the following countries : ISO 2239:1972

Belgium	https://standards.iteh.ai/cat	alog/standards/sist/91811c3b-/e24-4940-a368-
Czechoslovakia	New Zealand	United Kingdom
Egypt, Arab Rep. of	Romania	U.S.A.
France	South Africa, Rep. of	U.S.S.R.
Germany	Spain	
Italy	Switzerland	

No Member Body expressed disapproval of the document.

© International Organization for Standardization, 1972 •

Printed in Switzerland

Photography – Light sources for use in sensitometric exposure -Simulation of the spectral distribution of daylight

0 INTRODUCTION

The spectral quality of a sensitometric illuminant must closely match that of the radiant energy normally used in actual photography. In photography this quality is modified by the camera lens. The problem in specifying2a39:1 suitable simulated daylight source is one of deciding justards/ what spectral energy distribution best represents natural/isodaylight, which varies with time, location, atmospheric conditions, and with orientation of the illuminated surface, and also of deciding what spectral transmittance best characterizes a representative photographic lens.

In this International Standard a light source for simulating daylight in sensitometric exposure is considered acceptable if the spectral energy distribution is the same, within specified limits, as that of natural daylight having a correlated colour temperature of 5 500 K and modified by the transmittance of a representative lens. On the basis of recently published data¹⁾, it Japears that this phase of daylight best represents conditions which are typical for photography, i.e., the sun is unobscured by clouds and at an altitude of 40°, the plane of the illuminated surface is nearly vertical and facing the sun in azimuth, and the

Teh STANDAR atmosphere, is relatively clear. The spectral energy distribution of daylight at a correlated colour temperature of 5 500 K has been reported by Judd, MacAdam and Wyszecki²⁾ and it is their data, modified by the transmittance of a representative lens, that provide the basis for the specification of standard sensitometric daylight in this International Standard. The spectral transmittance of a representative lens is subject to further study, but for the purposes of this International Standard the values given in Table 3 are considered reasonable and have been used in computing the spectral energy distribution of standard sensitometric daylight.

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies requirements for light sources appropriate for use in the sensitometric exposure of photographic materials, both monochrome and colour. The spectral quality of the exposing radiant energy closely matches the spectral energy distribution of average daylight modified by the spectral transmittance of a representative camera lens (see Table 3), exclusive of the infrared.

¹⁾ H. R. Condit and F. Grum, J. Opt. Soc. Am. 54, 1937 (1964)

²⁾ D. B. Judd, D. L. MacAdam, G. Wyszecki, J. Opt. Soc. Am. 54, 1931 (1964)

2 LIGHT SOURCE

2.1 General requirements

The light source shall be a lamp operated at a condition such that, with an absorbing filter if necessary, the energy incident on the exposure plane of the sensitometer will have, within the limits shown in Table 1, the spectral distribution shown for standard sensitometric daylight (SSD) (see Table 2).

2.2 Specific requirements

Spectral

interval

nm

360 to 400

410 to 450

460 to 500

510 to 550

560 to 600

610 to 650

660 to 700

Total

Relative

energy

of SSD

115,0

362,0

494,6

510,1

480,8

460,9

436,9

2 860,3

An illuminant meeting the requirements of this International Standard shall provide in each spectral interval the same portion of its total energy as is provided in the corresponding spectral interval by standard sensitometric daylight (SSD) (within the limits shown in Table 1).

An example of a suitable illuminant is given in the Annex.

TABLE 1 - Requirements for relative spectral energy distribution

SSD

0.040

0,127

0,173

0,178

0,168

0,161

0,153

1,000

TABLE 2 - Relative spectral energy distribution of standard sensitometric daylight (5 500 K daylight and representative lens)

T

٢

(standa

b01[°]

Illuminantb6a95b

Upper

limits

0,045

0,132

0,178

0,183

0,173

0,166

0,158

Energy/Total energy

Lower

limits

0,035

0,122

0,168

0,173

0,163

0,156

0,148

Т

	Wavelength	Relative energy	Interval	Energy/Total energy
	nm	37	sum	577 57
	360	6,1		
	370	14,1		
	380	18,9		
	390	27,1		
	400	48,8	115,0	115/2 860 = 0,040
	410	59.0		
	420	64 4		
	420	63.1		
	430	81.3		
	450	94.2	362.0	362/2 860 = 0 127
		- ,-	002,0	
	460	97,4		
	470	97,9		
	480	101,6		
	490	97,0	T	
A	K 500 P K	100,75	494,6	495/2 860 = 0,173
r	ds iteh.	100.8		
	520	100,0		
22	30.10530	104,2		
and	ards/s 54 018f1c	3b-7 d22.4940	-a368-	
b02	2/iso- 550 9-197	2 103,0	510,1	510/2 860 = 0,178
	560	100,0		
	570	97,3		
	580	97,7		
	590	91,4	100.0	
	600	94,4	480,8	481/2 860 = 0,168
	610	95,1		
	620	94,2		
	630	90,4		
	640	92,3		
	650	88,9	460,9	461/2 860 = 0,161
	<u></u>	00.2		
	670	90,3 04.0		
	670	94,0 00.0		
	600	30,0 70,7		
	700	82.9	436.9	437/2 860 = 0 153
	T	0.000.0		
	iotal	2800,3	Iotal	1,000

The calculations of energy/total energy for each spectral interval of standard sensitometric daylight are indicated in Table 2.

EXAMPLE OF	Spectral transmittance		Wavelength	
	Liquid filter	Camera lens	nm	
	0,404	0,20	360	
	0,500	0,41	370	
A.1 LIGHTS	0,591	0,58	380	
Although othe	0,671	0,71	390	
light source w	0,728	0,80	400	
consists of a	0.769	0.00		
operated at a o	0,768	0,86	410	
a selectively ab	0,788	0,90	420	
values which o	0,783	0,93	430	
described in se	0,755	0,95	440	
	0,707	0,96	450	
	0,654	0,97	460	
	0,609	0,98	470	
	0,567	0.99	480	
	0,519	0,99	490	
Two solutions	0,463	1,00	500	
following forr	STA407DA	1, ooTeh	510	
cell made by u	0,364	1,00	520	
IS.1(refractive)	(stassdare	1,00	530	
working tempe	0,317	1,00	540	
89:1972	0,297 <u>ISO 22</u>	1,00	550	
rds/sist/918flc3b-7e2	ds.iteh.ai/catalog/standa	https://standar 1,00	560	
Monnital [C	0,250	1,00	570	
Mannitor [C	0,228	1,00	580	
Pyridine (C	0,209	1,00	590	
Water (disti	0,194	1,00	600	
Colution D	0,183	1,00	610	
Solution B	0,174	1,00	620	
Ammonium	0,166	1,00	630	
[(NH ₄) ₂	0,158	1,00	640	
Copper (II)	0,152	1,00	650	
Sulphuric a	0,145	1,00	660	
	0,136	1,00	670	
water (disti	1,127	1,00	680	
	0,118	1,00	690	
radiation is 0,2	0,108	1,00	700	

TABLE 3 - Spectral transmittance of representative camera lens and of liquid filter

....

ANNEX

A SUITABLE ILLUMINANT

DURCE

light sources and filters may be used, one nich meets the specific requirements of 2.2 n incandescent tungsten filament lamp olour temperature of 2 850 K together with sorbing filter¹⁾ having spectral transmittance onform to those in Table 3 and made up as tion A.2.

shall be compounded according to the ulae, the complete filter consisting of a aver of each solution contained in a double sing three pieces of borosilicate crown glass x, n = 1,51) each 2,5 ± 0,05 mm thick. The rature of the filter shall be 20 \pm 5 $^{\circ}$ C.

rds/sist/918f1c3b-7e24-4940-a368-		
$_{\rm ISO-2239}$ Copper (11) sulphate (CuSO ₄ .5H ₂ O)	2,445	5 g
Mannitol $[C_6 H_8 (OH)_6]$	2,445	5 g
Pyridine (C ₅ H ₅ N)	30,0	ml
Water (distilled) to make	1 000,0	ml
Solution B		
Ammonium cobalt(II) sulphate hexahydr	rate	
$[(NH_4)_2SO_4.CoSO_4.6H_2O]$	16,520) g

$[(NH_4)_2SO_4.CoSO_4.6H_2O]$	16,520 g
Copper (II) sulphate (CuSO ₄ .5H ₂ O)	19,020 g
Sulphuric acid ($ ho =$ 1,84 g/ml)	10,0 ml
Water (distilled) to make	1 000,0 ml

transmittance of this filter to 2850 K 62.

¹⁾ Detailed consideration of the make-up of colour-correcting filters is given in NBS Miscellaneous Publication No. 114, duplicate copies of which may be purchased upon application from Photoduplication Section, Library of Congress, Washington, D.C. 20540, U.S.A.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 2239:1972</u> https://standards.iteh.ai/catalog/standards/sist/918f1c3b-7e24-4940-a368b6a95bb01b02/iso-2239-1972

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 2239:1972</u> https://standards.iteh.ai/catalog/standards/sist/918f1c3b-7e24-4940-a368b6a95bb01b02/iso-2239-1972

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 2239:1972 https://standards.iteh.ai/catalog/standards/sist/918f1c3b-7e24-4940-a368b6a95bb01b02/iso-2239-1972