INTERNATIONAL STANDARD

ISO 4378-3

Third edition 2017-07

Plain bearings — Terms, definitions, classification and symbols —

Part 3: **Lubrication**

Paliers lisses — Termes, définitions, classification et symboles —

iTeh STPartic 3) Lubrification REVIEW (standards.iteh.ai)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4378-3:2017 https://standards.iteh.ai/catalog/standards/sist/91b61e9d-01fe-461c-bd5e-2a235509f534/iso-4378-3-2017

COPYRIGHT PROTECTED DOCUMENT

© ISO 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Con	tents	Page
Forew	vord	iv
Intro	duction	v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1

iTeh STANDARD PREVIEW (standards.iteh.ai)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see the following URL: www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 123, *Plain bearings*, Subcommittee SC 6, *Terms and common items*. $\frac{ISO 4378-3:2017}{ISO 4378-3:2017}$

https://standards.iteh.ai/catalog/standards/sist/91b61e9d-01fe-461c-bd5e-

This third edition cancels and replaces the **second edition** (ISO 437873:2009), which has been technically revised. The following changes have been made:

- editorial revision of the document;
- addition of 12 new figures;
- revision of clause numbers.

A list of all the parts in the ISO 4378 series can be found on the ISO website.

Introduction

As there is a large number of multiple designations in the domain of plain bearings, there is a considerable risk of error in the interpretation of standards and technical literature. This uncertainty leads to the continuous addition of supplementary designations, which only serves to increase the misunderstanding.

This document is an attempt to establish a uniform basic system of designations of lubrication.

iTeh STANDARD PREVIEW (standards.iteh.ai)

iTeh STANDARD PREVIEW (standards.iteh.ai)

Plain bearings — Terms, definitions, classification and symbols —

Part 3:

Lubrication

1 Scope

This document specifies the most commonly used terms relating to lubrication of plain bearings with their definitions and classification.

For some terms and word combinations, their short forms are given, which can be used where they are unambiguous. Self-explanatory terms are given without definitions.

2 Normative references

There are no normative references in this document.

iTeh STANDARD PREVIEW

3 Terms and definitions

standards.iteh.ai)

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1 General terms

3.1.1

lubrication

technique to reduce friction force, wear and deterioration of the surfaces of two bodies in contact and in relative motion due to the action and effect of lubricant

3.1.2

method of lubrication

method of supplying lubricant into the space between two bodies in contact and in relative motion

3.2 Types of lubrication and classification

3.2.1 Classification according to physical state of the lubricant

3.2.1.1

gas-film lubrication

lubrication (3.1.1) in which the interacting surfaces in relative motion are separated by a *gaseous lubricant* (3.4.1.1)

3.2.1.2

liquid-film lubrication

lubrication (3.1.1) in which the interacting surfaces in relative motion are separated by a *liquid lubricant* (3.4.1.2)

3.2.1.3

fluid-film lubrication

lubrication (3.1.1) in which the interacting surfaces in relative motion are separated by a fluid lubricant (gas or liquid)

3.2.1.4

solid-film lubrication

lubrication (3.1.1) in which the interacting surfaces in relative motion are separated by a *solid lubricant* (3.4.1.6)

3.2.2 Classification according to the mechanism of separation of the interacting surfaces by a lubricant film

3.2.2.1

hydrodynamic lubrication

lubrication (3.1.1) in which the interacting surfaces in relative motion are completely separated by the pressure generated in the fluid film between these surfaces due to their relative motion and the viscosity (3.5.1) of the fluid

3.2.2.2

hydrostatic lubrication iTeh STANDARD PREVIEW

lubrication (3.1.1) in which the interacting surfaces, either in relative motion or in a state of rest, are completely separated by supplying high-pressure fluid between the interacting surfaces from the outside

3.2.2.3 ISO 4378-32017

aerodynamic lubrication https://standards.iteh.ai/catalog/standards/sist/91b61e9d-01fe-461c-bd5e-

lubrication (3.1.1) in which the interacting surfaces in relative motion are completely separated by the pressure generated in the gas film between these surfaces due to their relative motion and the *viscosity* (3.5.1) of the gas

3.2.2.4

aerostatic lubrication

lubrication (3.1.1) in which the interacting surfaces, either in relative motion or in a state of rest, are completely separated by supplying high-pressure gas between the interacting surfaces from the outside

3.2.2.5

elasto-hydrodynamic lubrication

EHL

EHD

lubrication (3.1.1) in which the pressure, the friction force and the lubricant film thickness between the interacting surfaces in relative motion are governed by the elastic properties of the materials of contacting bodies, as well as the rheological properties of the lubricant, especially the pressure dependence of *viscosity* (3.5.1)

3.2.2.6

hard EHL

elasto-hydrodynamic lubrication (3.2.2.5) in which the effect of elastic deformation of interacting surfaces in relative motion, and the exponential increase in *viscosity* (3.5.1) of lubricant due to high pressure, prevail

3.2.2.7

soft EHL

elasto-hydrodynamic lubrication (3.2.2.5) in which the interacting surfaces have low elastic modulus and there is no increase in the *viscosity* (3.5.1) of the lubricant due to high pressure

3.2.2.8

micro EHL

lubrication (3.1.1) in which micro-asperities of the interacting surfaces in relative motion are lubricated under EHL conditions

3.2.2.9

boundary lubrication

lubrication (3.1.1) in which friction between, and wear of, two surfaces in relative motion are governed by the properties of the surface and by the properties of the lubricant other than bulk *viscosity* (3.5.1)

3.2.2.10

mixed-film lubrication

mixed lubrication

partial-film lubrication

lubrication (3.1.1) in which there is *fluid-film lubrication* (3.2.1.3) and *boundary lubrication* (3.2.2.9)

3.2.2.11

thermo-hydrodynamic lubrication

THL

THD

fluid-film lubrication (3.2.1.3) in which the lubricating conditions between two surfaces in relative motion are governed by the heat balance in the lubricant film, including heat generation due to shear, the heat transfer and the temperature-dependence of the lubricant *viscosity* (3.5.1)

3.2.2.12

thermo-elastohydrodynamic hibrication ARD PREVIEW

TEHL

TEHD (standards.iteh.ai)

fluid-film lubrication (3.2.1.3) in which the lubricating conditions between two surfaces in relative motion are governed by the heat balance in the lubricant film, including heat generation due to shear, the heat transfer, the elastic properties of friction surfaces and the rheological properties of the lubricant, especially, viscosity's (3.5.1) dependence on temperature and pressure

3.2.2.13

laminar flow lubrication

lubricating condition in which the molecules of the lubricant fluid move steadily and regularly, forming smooth streamlines

Note 1 to entry: This condition appears in a flow in which the viscous force prevails over the inertia force, or where the Reynolds number is relatively small and the Taylor number is less than a critical value.

3.2.2.14

non-laminar flow lubrication

lubricating condition for which the flow is not laminar and which includes transition and *turbulent flow lubrication* (3.2.2.16)

3.2.2.15

transition flow lubrication

Taylor flow lubrication

lubricating condition in which the stream lines are not smooth, but the turbulence is not fully developed

Note 1 to entry: Depending on the operating conditions, the Taylor vortexes can occur or not.

3.2.2.16

turbulent flow lubrication

lubricating condition in which the molecules of the lubricant move in an unsteady and irregular manner in time and space or in a turbulent manner and the Taylor number is greater than a critical value

Note 1 to entry: This condition appears in a flow in which the inertia force prevails over viscous force or where the Reynolds number is large.

3.2.2.17

starved lubrication

lubricating condition in which lubricant is insufficiently supplied between surfaces to be lubricated

3.2.2.18

non-lubrication

condition of relative motion without *lubrication* (3.1.1)

3.2.2.19

oil-free lubrication

lubricating condition in which interacting surfaces in relative motion are not lubricated by oil

3.2.2.20

grease lubrication

lubrication (3.1.1) in which *grease* (3.4.1.5) is used as lubricant

3.3 Terms related to methods of lubrication and classification

3.3.1 Terms related to classification according to periodicity of application of lubricant

3.3.1.1

continuous lubrication

method of lubrication (3.1.2) in which the lubricant is continuously supplied to the interacting surfaces in relative motion

3.3.1.2

iTeh STANDARD PREVIEW

periodical lubrication

method of lubrication (3.1.2) in which the lubricant is periodically supplied to the interacting surfaces in relative motion

ISO 4378-3:2017

Terms related to classification according to the methods of renewing the lubricant 3.3.2

3.3.2.1

recirculating lubrication

method of lubrication (3.1.2) in which the lubricant, having passed the interacting surfaces in relative motion, is mechanically recirculated to them

3.3.2.2

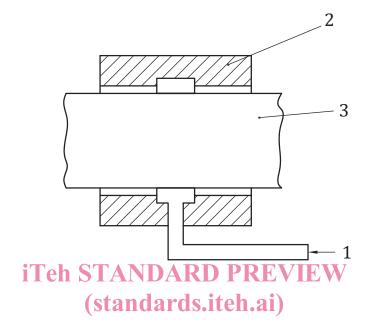
life-time prelubrication

method of lubrication (3.1.2) in which the lubricant is supplied only before the system is put into operation

3.3.2.3

once-through lubrication

method of lubrication (3.1.2) in which the lubricant is periodically or continuously supplied to the interacting surfaces in relative motion, without returning to the lubricating system


3.3.3 Classification according to the method of application of the lubricant to the friction surface

3.3.3.1

force-feed lubrication

method of lubrication (3.1.2) in which the lubricant is supplied between the interacting surfaces in relative motion by external force

Note 1 to entry: See Figure 1.

Key

- I force-feed lubricant ISO 4378-3:2017
- 2 bearing https://standards.iteh.ai/catalog/standards/sist/91b61e9d-01fe-461c-bd5e-2a235509f534/iso-4378-3-2017
- 3 shaft

Figure 1 — Force-feed lubrication