INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION •МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION

Photography —
Light sources for use in sensitometric exposure —
Simulation of the spectral distribution
of photoflood illumination

Teh STÄNDARD PREVIEW (standards.iteh.ai)

First edition - 1972-10-15

ISO 2242:1972
https://standards.iteh.ai/catalog/standards/isv/39 0048-ca99-4866-9655-733dd3823147/iso-2242-1972

A minute of the standards of

UDC 771.449.7

Ref. No. ISO 2242-1972 (E)

Descriptors: photography, light sources, sensitometers, spectral energy distribution, simulation, photographic flood lights

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 2242 was drawn up by Technical Committee ISO/TC 42, Photography. (standards.iteh.ai)

https://standards.iteh.ai/catalog/standards/sist/39e03048-ca99-4866-9655-

Belgium Czechoslovakia Japan

733dd3#Ballahdso-2242-1972

Czecnosiovakia

New Zealand

United Kingdom

Egypt, Arab Rep. of

Romania

U.S.A.

France Germany South Africa, Rep. of U.S.S.R.

Italy

Spain Switzerland

No Member Body expressed disapproval of the document.

© International Organization for Standardization, 1972 ●

Printed in Switzerland

Photography — Light sources for use in sensitometric exposure — Simulation of the spectral distribution of photoflood illumination

0 INTRODUCTION

Colour films at present available for photography with artificial light are of two types. One type is balanced for S. International Standard. exposure to incandescent tungsten sources operated at a colour temperature of 3 200 K; the other is balanced for incandescent tungsten sources operated at 3 400 KSOThe42:1972 sensitometric illuminant hoescribediams, ithisail.nteknational.rds/sis1/3 SCOPE AND FIELD OF APPLICATION Standard is intended for use with the latter (37400 & \$23141/iso-

In this International Standard the specifications of the spectral energy distribution for the sensitometric illuminant are derived from the spectral energy distribution of a black body having a colour temperature of 3 400 K modified by the spectral transmittance values for a representative camera lens as given in Table 3. Although further study is required to establish with certainty the spectral

transmittance which best characterizes a representative camera lens, the values given in Table 3 are considered reasonable and adequate for the intended purpose of this

This International Standard specifies requirements for light sources appropriate for use in the sensitometric exposure of photographic materials, both monochrome and colour. The spectral quality of the exposing radiant energy closely matches the spectral energy distribution of average photoflood illumination modified by the spectral transmittance of a representative camera lens (see Table 3), exclusive of the infrared.

2 LIGHT SOURCE

TABLE 2 - Relative spectral energy distribution of standard sensitometric photoflood1)

Relative energy

27

Wavelength

nm

260

Interval

sum

Energy/Total energy

2.1 General requirements

The light source shall be a lamp operated at a condition such that, with an absorbing filter if necessary, the energy incident on the exposure plane of the sensitometer will have, within the limits shown in Table 1, the spectral distribution shown for standard sensitometric photoflood (SSP) (see Table 2).

2.2 Specific requirements

An illuminant meeting the requirements of this International Standard shall provide in each spectral interval the same portion of its total energy as is provided in the corresponding spectral interval by standard sensitometric photoflood (SSP) (within the limits shown in Table 1).

An example of a suitable illuminant is given in the Annex.

TABLE 1 - Requirements for relative spectral energy distribution

https://standards.iteh.ai/catalog/star					stand
		Energy/Total energy ^{/33dd3}			
Spectral interval nm	Relative energy of SSP	SSP	Illum		
			Lower limits	Upper limits	
360 to 400	57,7	0,020	0,015	0,025	
410 to 450	177,1	0,062	0,057	0,067	
460 to 500	302,9	0,106	0,101	0,111	
510 to 550	429,0	0,149	0,144	0,154	
560 to 600	543,9	0,189	0,184	0,194	
610 to 650	642,1	0,224	0,219	0,229	
660 to 700	718,7	0,250	0,245	0,255	
Total	2 871,4	1,000			

The calculations of energy/total energy for each spectral interval of standard sensitometric photoflood are indicated in Table 2.

360	2,7		
370	6,7		
380	11,3		
390	16,0		
400	21,0	57,7	58/2 871 = 0,020
410	25,7		
420	30,5		
430	35,4		
440	40,4		
450	45,1	177,1	177/2 871 = 0,062
460	50,1		
470	55,4		
480	60,7		
490	65,6		
500	71,1	302,9	303/2 871 = 0,106
RD ₁₀ PI	REV _{76,E}	V	
1 520 h	81,0	,	
530	85,8		
540	90,7		
<u>442:19</u> / 2 550 lards/sist/39e03	95,4 048-ca99-4866	429,0 -9655-	429/2 871 = 0,149
/iso-2 260 2-19′	72 100,0		
570	104,5		
580	108,9		
590	113,2		
600	117,3	543,9	544/2 871 = 0,189
610	121,2	t.	
620	125,0		
630	128,6		
640	132,0		
650	135,3	642,1	642/2 871 = 0,224
660	138,3		
670	141,2		
680	143,9		
690	146,5		
700	148,8	718,7	719/2 871 = 0,250
Total	2 871,4	Total	1,000
1) 3 400 K ca	alculated from Pl	anck equation	on using $C_2 = 1,438.79$

and incorporating the transmittance of a representative camera lens (see Table 3).

TABLE 3 - Spectral transmittance of representative camera lens and of liquid filter

Wavelength	Spectral transmittance		EXAMPLE O
nm	Camera lens	Liquid filter	
360	0,20	0,606	A 1 LICUT
370	0,41	0,678	A.1 LIGHT
380	0,58	0,739	Although oth
390	0,71	0,785	light source
400	0,80	0,817	consists of
			operated at a
410	0,86	0,837	a selectively a
420	0,90	0,846	values which described in s
430	0,93	0,843	described in s
440	0,95	0,828	
450	0,96	0,803	
460	0,97	0,776	
470	0,98	0,752	A.2 FILTER
480	0,99	0,730	Two solution
490	0,99	0,705	following for
500	1,00	0,672	1 ± 0,005 cm
			cell made by
510	1,00° oh	0,639	(refractive in
520	1,00	O,613	working temp
530	1,00	(sta ^{0,599} arc	ls.iteh.ai)
540	1,00	0,590	Solution A
550	1,00	0,579	1070
E60	144-1-0011	15U 22	12:19/2 Copper (II
560	1,00	s.iteh.ai/caa566/standa 733054923141	
570 580	1,00	0,532	150-22-2-1972
	1,00	0,515	Pyridine (
590	1,00	0,513	Water (dis
600	1,00	0,501	
610	1,00	0,491	Solution B
620	1,00	0,483	
630	1,00	0,475	Ammoniu
640	1,00	0,468	[(NH ₄)
650	1,00	0,463	Copper(II
660	1,00	0,456	Sulphuric
670	1,00	0,449	Water (dis
680	1,00	0,440	Water (uis
690	1,00	0,429	
700	1,00	0,418	The lumino
/00	1,00	1	radiation is 0

ANNEX

EXAMPLE OF A SUITABLE ILLUMINANT

A.1 LIGHT SOURCE

Although other light sources and filters may be used, one light source which meets the specific requirements of 2.2 consists of an incandescent tungsten filament lamp operated at a colour temperature of 2 850 K together with a selectively absorbing filter 1) having spectral transmittance values which conform to those in Table 3 and made up as described in section A.2.

A.2 FILTER

Two solutions shall be compounded according to the following formulae, the complete filter consisting of a 1 ± 0,005 cm layer of each solution contained in a double cell made by using three pieces of borosilicate crown glass (refractive index, n = 1,51) each 2,5 ± 0,05 mm thick. The working temperature of the filter shall be 20 \pm 5 $^{\circ}$ C.

Solution A

Copper (II) sulphate (CuSO ₄ .5H ₂ O)	0,928	g
/39e03048-ca99-4866-9655- 42Mannitol [C ₆ H ₈ (OH) ₆]	0,928	g
Pyridine (C ₅ H ₅ N)	30,0	ml
Water (distilled) to make	1 000,0	mi

Solution B

Ammonium cobalt (II) sulphate hexahydrate				
[(NH4)2SO4.CoSO4.6H2O]		7,796	•	g
Copper(II) sulphate (CuSO ₄ .5H ₂ O)		6,455	!	g
Sulphuric acid ($ ho=$ 1,84 g/ml)		10,0	m	۱l
Water (distilled) to make	1 0	00,0	m	ıl

The luminous transmittance of this filter to 2 850 K radiation is 0,548.

¹⁾ Detailed consideration of the make-up of colour-correcting filters is given in NBS Miscellaneous Publication No. 114, duplicate copies of which may be purchased upon application from Photoduplication Section, Library of Congress, Washington, D.C. 20540, USA.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 2242:1972 https://standards.iteh.ai/catalog/standards/sist/39e03048-ca99-4866-9655-733dd3823141/iso-2242-1972

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 2242:1972 https://standards.iteh.ai/catalog/standards/sist/39e03048-ca99-4866-9655-733dd3823141/iso-2242-1972

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 2242:1972 https://standards.iteh.ai/catalog/standards/sist/39e03048-ca99-4866-9655-733dd3823141/iso-2242-1972