NORME INTERNATIONALE

ISO 20623

Deuxième édition 2017-12

Pétrole et produits connexes — Détermination des propriétés extrême pression et anti-usure des lubrifiants — Essai quatre billes (conditions Européennes)

Petroleum and related products — Determination of the extremepressure and anti-wear properties of lubricants — Four-ball method (European conditions) (Standards.iten.ai)

ISO 20623:2017 https://standards.iteh.ai/catalog/standards/sist/68fd8844-3a25-439d-b9ac-f9714dd482f1/iso-20623-2017

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 20623:2017 https://standards.iteh.ai/catalog/standards/sist/68fd8844-3a25-439d-b9ac-f9714dd482f1/iso-20623-2017

DOCUMENT PROTÉGÉ PAR COPYRIGHT

© ISO 2017, Publié en Suisse

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l'affichage sur l'internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d'autorisation peuvent être adressées à l'ISO à l'adresse ci-après ou au comité membre de l'ISO dans le pays du demandeur.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

50 1	mmaire	Page
Avan	1t-propos	iv
Intro	oduction	v
1	Domaine d'application	1
2	Références normatives	1
3	Termes et définitions	1
4	Principe	2
5	Solvants de nettoyage	2
6	Appareillage	3
7	Échantillons et échantillonnage	5
8	Préparation de l'appareillage	5
9	Mode opératoire général	5
10 11	Modes opératoires 10.1 Essai A — Indice de la charge d'usure (ICU) 10.2 Essai B — Courbe usure-charge, charge de soudure, point critique et charge initiale de grippage 10.3 Essai C — Essai d'usure Calculs 11.1 Généralités 11.2 Essai A — Indice de la charge d'usure iteh.ai)	
	11.3 Essai B — Courbe d'usure, paramètre température éclair et charge initiale de gripp 11.4 Essai C — Essai d'usure	age . 11
12	https://standards.iteh.ai/catalog/standards/sist/68fd8844-3a25-439d-b9ac- Expression des résultats 9714dd482f1/iso-20623-2017	12
13	Fidélité	12 12
14	Rapport d'essai	13
Anne	exe A (normative) Spécifications des billes d'essai	14
	exe B (normative) Fiche de travail pour le calcul de la charge moyenne de Hertz	
Bibli	iographie	17

Avant-propos

L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui concerne la normalisation électrotechnique.

Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents critères d'approbation requis pour les différents types de documents ISO. Le présent document a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www.iso.org/directives).

L'attention est attirée sur le fait que certains des éléments du présent document peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de brevets reçues par l'ISO (voir www.iso.org/brevets).

Les appellations commerciales éventuellement mentionnées dans le présent document sont données pour information, par souci de commodité, à l'intention des utilisateurs et ne sauraient constituer un engagement.

(standards.iteh.ai)

Pour une explication de la nature volontaire des normes, la signification des termes et expressions spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion de l'ISO aux principes de l'Organisation mondiale du commerce (OMC) concernant les obstacles techniques au commerce (OTC), voir le lien suivant: www.iso.org/avant-propos.

Le présent document a été élaboré par le comité technique ISO/TC 28, *Produits pétroliers et produits connexes d'origine synthétique ou biologique*.

Cette deuxième édition annule et remplace la première édition (ISO 2623:2003), qui a fait l'objet d'une révision technique.

Les principales modifications par rapport à la première édition sont les suivantes:

- son domaine d'application est maintenant étendu à tous les types de lubrifiants liquides et graisses, alors qu'il ne s'appliquait auparavant qu'aux fluides hydrauliques résistant au feu;
- les modes opératoires ont été techniquement revus, mais demeurent les mêmes pour l'essentiel;
- les billes de l'essai ont été mieux définies (voir l'<u>Annexe A</u>) et les calculs concernant l'essai d'usure ont été ajoutés;
- la procédure d'étalonnage des ressorts enregistreurs à frottements a été supprimée et il est maintenant fait référence aux instructions du fabricant.

Introduction

La machine quatre billes se trouve dans de nombreux laboratoires et est régulièrement utilisée pour évaluer les propriétés anti-usure de tous les types de lubrifiants liquides, de graisses lubrifiantes et d'autres lubrifiants pâteux.

Un moteur électrique, dont la vitesse de rotation dépend de la fréquence du courant, actionne la machine quatre billes. Par conséquent, les résultats obtenus varient selon le pays dans lequel les machines sont utilisées et ne peuvent être comparés.

L'ASTM a normalisé plusieurs méthodes d'essai employant la machine à 4 billes:

- ASTM D2266
- ASTM D4172
- ASTM D2596
- ASTM D2783

L'Energy Institute a normalisé l'IP 239.

Le DIN a normalisé la DIN 51350, divisée en cinq parties:

- Part 1: General working principles
- Part 2: Determination of the welding load of liquid lubricants
- Part 3: Determination of the wearing characteristics of liquid lubricants
- Part 4: Determination of the welding load of consistent lubricants
- Part 5: Determination of the wearing characteristics of consistent lubricants

Les méthodes d'essai normalisée par le DIN, l'ASTM et l'Energy Institute spécifient des vitesses de rotation différentes.

Le <u>Tableau 1</u> suivant présente les conditions d'essai des normes ci-dessus:

Tableau 1 — Conditions d'essai prescrites dans les normes d'essai quatre billes

Norme	Lubrifiant	Type d'essai	Charge N	Durée	vitesse de rotation r/min	Température °C
ASTM D2266	Graisse	Usure	392	60 min	1 200	75 °C
ASTM D4172	Huile	Usure	147 (A) 392 (B)	60 min	1 200	75 °C 75 °C
ASTM D2596	Graisse	Extrême-pres- sion	de 59 à 7 848	10 s	1 770	de 19 à 35 °C
ASTM D2783	Huile	Extrême-pres- sion	de 59 à 7 848	10 s	1 760	de 18 à 35 °C
IP 239	Graisse - Huile	Extrême-pres- sion + Usure	de 60 à 7 940	Usure: 60 min EP: 10 ou 60 s	1 450	Non spécifié
DIN 51350-2	Huile	Charge de sou- dure	de 2 000 à 12 000	60 s	1 450	de 18 à 40

Tableau 1 (suite)

Norme	Lubrifiant	Type d'essai	Charge N	Durée	vitesse de rotation r/min	Température °C
DIN 51350-3	11	11	150 (A)	60i	1 450	1- 10 \ 10
	Huile	Usure	300 (B)	60 min	1 450	de 18 à 40
DIN 51350-4	Lubrifiant	Charge de sou-	de 2 000 à	(0.5	1 450	do 10 à 40
	pâteux	dure	12 000	60 s	1 450	de 18 à 40
DIN 51350-5			150 (C)	60 min		
	Lubrifiant pâteux	Usure	300 (D)	60 min	1 450	de 18 à 40
	pateux		1 000 (E)	60 s		

Les propriétés des lubrifiants caractérisées par ces diverses méthodes d'essai sont aussi différentes et sont définies dans le <u>Tableau 2</u>.

Tableau 2 — Évaluation des propriétés des lubrifiants par diverses méthodes

Norme	Propriétés des lubrifiants
ASTM D2262	DMEU (mm) sous une charge de 392 N
ASTM D4172	DMEU (mm) sous 147 N des 392 N
ASTM D2596	CS (N), ICU (N), DCSG (dernière charge sans grippage) (N)
ASTM D2783	CS (N), ICU (N)
IP 239	CS (N), ICU (10 s ou 60 s), CIG (N), DMEU (mm) (10 s, 60 s ou 60 min)
DIN 51350-2	CS (N) ISO 20623:2017
DIN 51350-3	DMEU (150 Nson 300 No 60 min) bg/standards/sist/68fd8844-3a25-439d-b9ac-
DIN 51350-4	CS (N) f9714dd482f1/iso-20623-2017
DIN 51350-5	DMEU (150 N, 300 N ou 1 000 N)

L'objet de ce document est de proposer une norme unique qui permette d'évaluer les propriétés d'extrême-pression et d'anti-usure de tous les types de lubrifiants au moyen de la machine quatre billes à la vitesse de rotation de 1 450 r/min.

Les procédures opératoires tiennent compte de toutes les particularités des machines disponibles sur le marché.

Les propriétés des lubrifiants qui peuvent être évaluées selon cette méthode d'essai sont les suivantes:

- a) charge initiale de grippage (CIG);
- b) charge de soudure (CS);
- c) courbe usure charge;
- d) indice de charge d'usure (ICU);
- e) caractéristiques anti-usure de courte durée (DMEU) (10 ou 60 s) et de longue durée (60 min).

Pétrole et produits connexes — Détermination des propriétés extrême pression et anti-usure des lubrifiants — Essai quatre billes (conditions Européennes)

AVERTISSEMENT — L'utilisation du présent document peut impliquer l'intervention de produits, d'opérations et d'équipements à caractère dangereux. Le présent document n'est pas censé aborder tous les problèmes de sécurité concernés par son usage. Il est de la responsabilité des utilisateurs de ce document de prendre les mesures appropriées pour assurer la sécurité et préserver la santé du personnel avant son application, et pour répondre à d'autres exigences.

1 Domaine d'application

Le présent document spécifie des méthodes de mesure des propriétés extrême pression (EP) et antiusure des lubrifiants liquides (catégories C, D, F, G, H, M et P de l'ISO 6743-99), des graisses lubrifiantes (ISO 6743-9, catégorie X) et autres lubrifiants pâteux au moyen de la machine à quatre billes. Les conditions d'essai ne visent pas à simuler des conditions d'utilisation particulières, mais à fournir une variété de conditions normalisées pour la recherche, le développement, le contrôle qualité et la comparaison de fluides. Les résultats sont utilisés dans des spécifications de lubrifiants.

2 Références normatives 2 Réfé

ISO 3170, Produits pétroliers liquides — Échantillonnage manuel

ISO 3290-1, Roulements — Billes — Partie 1: Billes de roulement en acier

ASTM D4057, Standard Practice for Manual Sampling of Petroleum and Petroleum Products

3 Termes et définitions

Pour les besoins du présent document, les termes et définitions suivants s'appliquent.

L'ISO et la IEC tiennent à jour des bases de données terminologiques pour la normalisation aux adresses suivantes:

- ISO Online browsing platform: disponible à l'adresse https://www.iso.org/obp
- IEC Electropedia: disponible à l'adresse http://www.electropedia.org/

3.1

usure

<méthode quatre billes> arrachement de métal des éprouvettes

Note 1 à l'article: Pour des charges et des frottements faibles, l'usure ne produit que de légères empreintes circulaires sur les trois billes fixes et un anneau sur la bille tournante. Les diamètres de ces empreintes sont légèrement supérieurs à celui de l'empreinte provoqué par la charge statique (diamètre de Hertz).

3.2

grippage

<méthode quatre billes> fusion localisée du métal entre les surfaces en frottement des éprouvettes

Note 1 à l'article: Ce grippage se traduit par un accroissement du frottement et de l'usure, il en résulte une certaine rugosité des empreintes et de l'anneau formés sur les billes.

3.3

soudure

<méthode quatre billes> fusion du métal entre les surfaces en frottement, suffisante pour provoquer une soudure des billes entre elles pour former une pyramide

3.4

indice de la charge d'usure

ICU

<méthode quatre billes> indice de l'aptitude d'un lubrifiant à réduire *l'usure* (3.1) à une charge appliquée (propriété d'un lubrifiant à supporter une charge)

Note 1 à l'article: L'ICU est exprimé en newtons.

3.5

courbe usure-charge

tracé logarithmique de la charge en fonction du diamètre moyen de l'empreinte d'usure (3.7)

3.6

charge initiale de grippage iTeh STANDARD PREVIEW

charge minimale à laquelle se produit le grippage (3.2) ds.iteh.ai)

3.7

diamètre moyen de l'empreinte d'usure

ISO 20623:2017

DMEU

https://standards.iteh.ai/catalog/standards/sist/68fd8844-3a25-439d-b9ac-

<méthode quatre billes> moyenne de six mesures du diamètre de l'empreinte d'usure, deux de chacune des billes stationnaires, prises dans le sens de frottement des billes et perpendiculairement à celui-ci

4 Principe

Une bille en contact avec trois billes fixes est mise en rotation. Le lubrifiant soumis à essai sert à lubrifier les billes. Un levier permet d'appliquer des charges pour obtenir des mesures d'usure, de frottement et de soudure.

Selon le résultat à rapporter, ce document spécifie les trois conditions d'essai différentes suivantes:

- a) Essai A pour la indice de la charge d'usure (ICU), voir 10.1;
- b) Essai B pour la courbe usure-charge, voir 10.2;
- c) Essai C pour l'usure, voir 10.3.

5 Solvants de nettoyage

Afin d'assurer un nettoyage complet, des solvants appropriés doivent être utilisés (il peut être nécessaire de procéder à plusieurs nettoyages). Le solvant le plus approprié peut dépendre pour une part significative du type de produit à l'essai.

NOTE Par exemple, des hydrocarbures légers ou de l'acétone constituent un choix acceptable, alors que pour des fluides hydrauliques, un alcool de faible masse molaire peut convenir à la première étape de nettoyage.

6 Appareillage

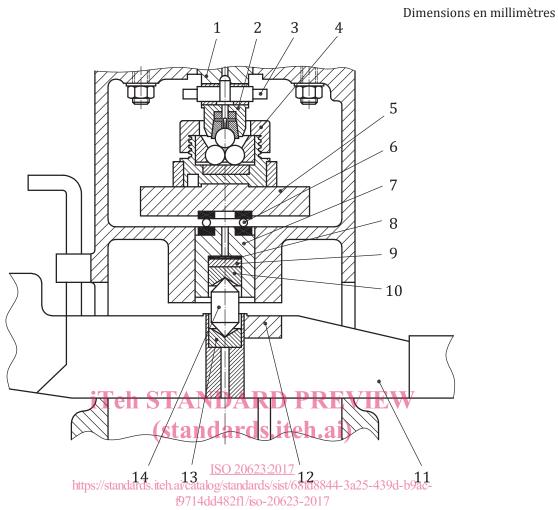
6.1 Machine 4 billes pour essai extrême pression sur lubrifiants, consistant en un dispositif de rotation d'une bille de roulement en contact avec trois billes fixes qui sont immergées dans le fluide soumis à essai.

Une vue en coupe est représentée à la Figure 1. Des charges différentes sont appliquées aux billes au moyen de différents systèmes possibles tels que des disques agissant sur un levier, des systèmes électriques, hydrauliques ou pneumatiques. La bille supérieure en rotation est maintenue dans une pince de bille spéciale (voir Figure 2) à l'extrémité inférieure de l'arbre vertical d'un moteur électrique. Il convient que le moteur d'entrainement soit en mesure de maintenir une vitesse de rotation de 1 450 min⁻¹ à 1 500 min⁻¹. La vitesse du moteur peut être contrôlée numériquement. Les billes inférieures sont maintenues en place l'une contre l'autre dans une cuvette en acier au moyen d'un anneau de serrage et d'une vis de blocage. La cuvette est maintenue au-dessus du système de mise en charge par un disque qui repose sur un roulement de butée, permettant donc le déplacement horizontal et l'alignement automatique des trois billes inférieures contre la bille supérieure. Le couple de frottement exercé sur les trois billes inférieures peut éventuellement être mesuré au moyen de systèmes qui sont spécifiques aux différents fabricants de machine quatre billes (voir 6.2).

NOTE Il est important de faire une distinction entre la machine quatre billes pour essais extrême-pression de lubrifiants spécifiée dans le présent document et la machine quatre billes pour essais d'usure qui est limitée à des charges maximales de 500 N.

- **6.2 Dispositif d'enregistrement de frottements,** facultatif, pouvant surveiller le comportement de frottement du système quatre billes pendant l'essai. Il doit être étalonné conformément aux recommandations données dans le manuel du fabricant. **Standards.iteh.ai**
- **6.3 Masses de charge**, constituées d'une série de disques permettant d'appliquer des charges de 60 N à 8 kN, pour les machines fonctionnant avec des systèmes de chargement de disques.

https://standards.iteh.ai/catalog/standards/sist/68fd8844-3a25-439d-b9ac-linear.equal to the control of the c


NOTE Certaines machines robustes peuvent supporter des charges jusqu'à 12 kN.

Pour les machines équipées d'un bras de levier de charge, les masses sont constituées d'un ensemble d'anneaux de différentes valeurs qui se placent dans des encoches ou des trous usinés dans le bras de levier. Les encoches ou les trous sont identifiés avec la force résultante qui est appliquée si la masse se trouve à une position donnée.

- **6.4 Microscope,** doté d'une échelle de mesure étalonnée pour des mesures avec une exactitude de ±0,01 mm.
- **6.5 Chronomètre,** manuel ou électronique d'une exactitude de 0,2 s.

NOTE Certaines machines sont équipées de chronomètres précis, qui arrêtent automatiquement le moteur lorsque la durée de l'essai sélectionnée est atteinte.

- **6.6 Billes d'essai,** voir <u>Annexe A</u>.
- **6.7 Dispositif de montage,** consistant en un dispositif approprié, solidement boulonné sur un établi pour faciliter la mise en place ou le retrait des billes inférieures dans la cuvette. La cuvette doit être fixée de manière à permettre le serrage ou le desserrage de la vis de blocage sans que la cuvette tourne.

Légende

1 porte-pince

2 pince de la bille

3 dispositif de fixation de la pince

4 cuvette

5 disque de montage de la cuvette

6 roulement de butée

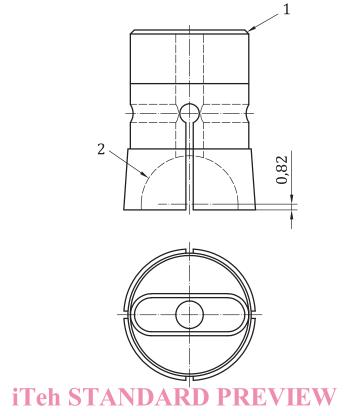
7 piston de pression

8 disques de laiton

9 disques en caoutchouc

10 crapaudine

11 bras de levier avec contre poids


12 pivot

13 crapaudine

14 broche de pression

NOTE Pour certains équipements, les systèmes électriques, pneumatiques ou hydrauliques, en appliquant la charge sur le piston de pression, peuvent remplacer le bras de levier.

Figure 1 — Vue en coupe de la machine d'essai EP à quatre billes

Légende

- 1 dimensions externes adaptées à la machine ards, iteh ai)
- 2 rectifié et rodé pour assurer un ajustement serré de la bille d'essai

NOTE Matière: acier à outils (EN 10027). ISO 20623:2017

https://standards.iteh.ai/catalog/standards/sist/68fd8844-3a25-439d-b9ac-

Figure 2 — Pince de bille supérieure

7 Échantillons et échantillonnage

Sauf spécification contraire, les échantillons liquides doivent être prélevés conformément à l'ISO 3170. Les graisses doivent être échantillonnées conformément à l'ASTM D4057.

8 Préparation de l'appareillage

- **8.1** Avant de commencer une série d'essais, faire tourner la machine (6.1) sans charges pendant un minimum de 15 min. Nettoyer tous les éléments appropriés de la machine à l'aide du solvant de nettoyage (Article 5) puis les sécher sous un courant d'air sec ou au moyen d'un chiffon sec et propre ne peluchant pas.
- 8.2 Nettoyer quatre billes neuves $(\underline{6.6})$ par essai prévu avec le solvant de nettoyage puis les sécher au moyen d'un chiffon sec et propre ne peluchant pas.

9 Mode opératoire général

9.1 Placer la cuvette sur le dispositif de montage (6.7). Déposer trois billes propres dans la cuvette, les maintenir en position au moyen de l'anneau de serrage et fixer l'assemblage en serrant la vis de blocage avec un couple de (68 ± 7) Nm. Ajouter une quantité d'échantillon liquide suffisante (8 ml à 10 ml) pour que les billes fixées soient recouvertes de 3 mm de liquide. Lorsque l'essai est appliqué à des dispersions