

SLOVENSKI STANDARD oSIST prEN IEC/IEEE 63195-1:2022

01-september-2022

Ocenjevanje gostote moči na človeku, izpostavljenem radiofrekvenčnim poljem iz brezžičnih naprav, ki so zelo blizu njegovi glavi in telesu (frekvenčno območje 6 GHz - 300 GHz) - 1. del: Merilni postopek

Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) - Part 1: Measurement procedure

Bewertung der Leistungsdichte der Exposition des Menschen gegenüber hochfrequenten Feldern von drahtlosen Geräten in unmittelbarer Nähe des Kopfes und des Körpers (Frequenzbereich von 6 GHz bis 300 GHz) - Teil 1: Messverfahren

https://standards.iteh.ai/catalog/standards/sist/039a18bb-a1e2-47e1-accf-

Évaluation de la densité de puissance de l'exposition humaine aux champs radiofréquences provenant de dispositifs sans fil à proximité immédiate de la tête et du corps (plage de fréquences de 6 GHz à 300 GHz) - Partie 1: Procédure de mesure

Ta slovenski standard je istoveten z: prEN IEC/IEEE 63195-1

ICS:

17.220.20 Merjenje električnih in magnetnih veličin

Measurement of electrical and magnetic quantities

oSIST prEN IEC/IEEE 63195-1:2022

en,fr,de

oSIST prEN IEC/IEEE 63195-1:2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN IEC/IEEE 63195-1:2022 https://standards.iteh.ai/catalog/standards/sist/039a18bb-a1e2-47e1-accfde22a5e5d869/osist-pren-iec-ieee-63195-1-2022 oSIST prEN IEC/IEEE 63195-1:2022

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

DRAFT prEN IEC/IEEE 63195-1

June 2022

ICS 17.220.20

English Version

Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) - Part 1: Measurement procedure (IEC/IEEE 63195-1:2022)

Évaluation de la densité de puissance de l'exposition humaine aux champs radiofréquences provenant de dispositifs sans fil à proximité immédiate de la tête et du corps (plage de fréquences de 6 GHz à 300 GHz) -Partie 1: Procédure de mesure (IEC/IEEE 63195-1:2022) Bewertung der Leistungsdichte der Exposition des Menschen gegenüber hochfrequenten Feldern von drahtlosen Geräten in unmittelbarer Nähe des Kopfes und des Körpers (Frequenzbereich von 6 GHz bis 300 GHz) -Teil 1: Messverfahren (IEC/IEEE 63195-1:2022)

This draft European Standard is submitted to CENELEC members for enquiry. Deadline for CENELEC: 2022-09-16.

The text of this draft consists of the text of IEC/IEEE 63195-1:2022 (106/507/CDV).

If this draft becomes a European Standard, CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CENELEC in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a European Standard.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

prEN IEC/IEEE 63195-1:2022 (E)

European foreword

This document (prEN IEC/IEEE 63195-1:2022) consists of the text of document IEC/IEEE 63195-1:2022, prepared by IEC/TC 106 "Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure".

This document is currently submitted to the Enquiry.

The following dates are proposed:

•	latest date by which the existence of this document has to be announced at national level	(doa)	dor + 6 months
•	latest date by which this document has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	dor + 12 months
•	latest date by which the national standards conflicting with this document have to be withdrawn	(dow)	dor + 36 months (to be confirmed or modified when voting)

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN IEC/IEEE 63195-1:2022 https://standards.iteh.ai/catalog/standards/sist/039a18bb-a1e2-47e1-accfde22a5e5d869/osist-pren-iec-ieee-63195-1-2022

prEN IEC/IEEE 63195-1:2022 (E)

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cenelec.eu</u>.

Publication	<u>Year</u>	Title	<u>EN/HD</u>	Year
IEC/IEEE 62209- 1528	2020 Feh	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-worn wireless communication devices - Part 1528: Human models, instrumentation and procedures (Frequency range of 4 MHz to 10 GHz)	EN IEC/IEEE 62209- 1528	2021
IEC/IEEE 63195-2	2022 standar de	Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (Frequency range of 6 GHz to 300 GHz) – Part 2: Computational procedure	EN IEC/IEEE 63195-2 a1e2-47e1-accf- 2022	1

¹ To be published. Stage at the time of publication: prEN IEC/IEEE 63195-2:2022

oSIST prEN IEC/IEEE 63195-1:2022

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN IEC/IEEE 63195-1:2022 https://standards.iteh.ai/catalog/standards/sist/039a18bb-a1e2-47e1-accfde22a5e5d869/osist-pren-iec-ieee-63195-1-2022

Edition 1.0 2022-05

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) – Part 1: Measurement procedure

IST prEN IEC/IEEE 63195-1:2022

Évaluation de la densité de puissance de l'exposition humaine aux champs radiofréquences provenant de dispositifs sans fil à proximité immédiate de la tête et du corps (plage de fréquences de 6 GHz à 300 GHz) – Partie 1: Procédure de mesure

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 17.220.20

ISBN 978-2-8322-0123-7

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FC	DREWO	RD	9	
IN	INTRODUCTION			
1	Scop	e	12	
2	Norm	native references	13	
3	Term	s and definitions	13	
-	3.1	Exposure metrics and parameters	13	
	3.2	Spatial, physical, and geometrical parameters associated with exposure	. 10	
	0.2	metrics.	16	
	3.3	Measurement instrumentation, field probe, and data-processing parameters	17	
	3.4	RF power parameters	20	
	3.5	Test device technical operating and antenna parameters	21	
	3.6	Test device physical configurations	23	
	3.7	Uncertainty parameters	24	
4	Syml	ools and abbreviated terms	25	
	4.1	Symbols	25	
	4.1.1	Physical quantities	25	
	4.1.2	Constants	26	
	4.2	Abbreviated terms	26	
5	Quic	k start guide and application of this document	27	
	5.1	Quick start guide	27	
	5.2	Application of this document	30	
	5.3	Stipulations	30	
6	Meas	surement system and laboratory requirements	30	
	6.1	General requirements	30	
	6.2	Laboratory requirements	31	
	6.3	Field probe requirements	32	
	6.4	Measurement instrumentation requirements	32	
	6.5	Scanning system requirements	33	
	6.5.1	Single-probe systems	33	
	6.5.2	Multiple field-probe systems	33	
	6.6	Device holder requirements	34	
	6.7	Post-processing quantities, procedures, and requirements	35	
	6.7.1	Formulas for calculation of <i>sPD</i>	35	
	6.7.2	Post-processing procedure	37	
_	6.7.3	Requirements	38	
1	Proto	ocol for PD assessment	39	
	7.1	General	39	
	7.2	Measurement preparation	39	
	7.2.1	Relative system check	39	
	7.2.2	DUT requirements	39	
	7.2.3	DUT preparation	40	
	7.2.4	Selecting evaluation surfaces	41	
	1.3 ۲ ۵ ۲		44 //	
	1.3.1 7 2 2	Tests to be performed when supported by simulations of the estance	44	
	1.3.2	array	46	
	7.3.3	Tests to be performed by measurements of the antenna array	48	

IEC/IEEE 63195-1:2022 © IEC/IEEE 2022 - 3 -

	7.4	Measurement procedure	48
	7.4.1	General measurement procedure	48
	7.4.2	Power density assessment methods	49
	7.4.3	Power scaling for operating mode and channel	51
	7.4.4	Correction for DUT drift	53
	7.5	Exposure combining	54
	7.5.1	General	54
	7.5.2	Combining power density and SAR results	55
8	Uncer	rtainty estimation	58
	8.1	General	58
	8.2	Requirements for uncertainty evaluations	58
	8.3	Description of uncertainty models	58
	8.4	Uncertainty terms dependent on the measurement system	59
	8.4.1	CAL – Calibration of the measurement equipment	59
	8.4.2	COR – Probe correction	59
	8.4.3	FRS – Frequency response	59
	8.4.4	SCC – Sensor cross coupling	60
	8.4.5	ISO – Isotropy	61
	8.4.6	<i>LIN</i> – System linearity error	61
	8.4.7	<i>PSC</i> – Probe scattering	61
	8.4.8	PPO – Probe positioning offset	62
	8.4.9	<i>PPR</i> – Probe positioning repeatability	62
	8.4.10) SMO – Sensor mechanical offset	63
	8.4.1 ⁻	1 PSR – Probe spatial resolution	63
	8.4.12	2 FLD – Field impedance dependence (ratio E / H)	63
	8.4.13	Bittp <i>MED</i> – Measurement driftstandards/sist/039a18bb.al.e2.47e1.acof	63
	8.4.14	APN – Amplitude and phase noise actives -63195-1-2022	64
	8.4.15	5 <i>TR</i> – Measurement area truncation	64
	8.4.16	6 DAQ – Data acquisition	64
	8.4.17	7 SMP – Sampling	64
	8.4.18	3 REC – Field reconstruction	64
	8.4.19	9 SNR – Signal-to-noise ratio	65
	8.4.20	<i>TRA</i> – Forward transformation and backward transformation	65
	8.4.2	1 SCA – Power density scaling	66
	8.4.22	2 SAV – Spatial averaging	66
	8.4.23	3 COM – Exposure combining	66
	8.5	Uncertainty terms dependent on the DUT and environmental factors	66
	8.5.1	<i>PC</i> – Probe coupling with DUT	66
	8.5.2	MOD – Modulation response	67
	8.5.3	<i>IT</i> – Integration time	67
	8.5.4	<i>RT</i> – Response time	68
	8.5.5	DH – Device holder influence	68
	8.5.6	DA – DUT alignment	68
	8.5.7	<i>AC</i> – RF ambient conditions	68
	8.5.8	<i>TEM</i> – Laboratory temperature	68
	8.5.9	<i>REF</i> – Reflections in laboratory	69
	8.5.10	<i>MSI</i> – Measurement system immunity/secondary reception	69
	8.5.1 <i>°</i>	1 DRI – DUT drift	69
	8.6	Combined and expanded uncertainty	69

- 4 - IEC/IEEE 63195-1:2022 © IEC/IEEE 2022

9 Mea	surement report	73
9.1	General	73
9.2	Items to be recorded in measurement reports	73
Annex A	(normative) Measurement system check and system validation tests	76
A.1	Overview	76
A.2	Normalization to total radiated power	77
A.2.	1 General	77
A.2.	2 Option 1: Accepted power measurement	77
A.2.	3 Option 2: Total radiated power measurement	81
A.3	Relative system check	
A.3.	1 Purpose	
A.3.	2 Antenna and test conditions	82
A.3.	3 Procedure	
A.3.	4 Acceptance criteria	
A.4	Absolute system check	
A.4.	1 Purpose	
A.4.	2 Antenna and test conditions	85
A.4.	3 Procedure	
A.4.	4 Acceptance criteria	
A.5	System validation	
A.5.	1 Purpose	
A.5.	2 Procedure	
A.5.	3 Validation of modulation response	87
A.5.	4 Acceptance criteria	87
Annex B	(normative) Antennas for system check and system validation tests	
B.1	General tandards, iteh.ai/catalog/standards/sist/039a18bb-a1e2-47e1-accf-	
B.2	Pyramidal horn antennas for system checks	90
B.3	Cavity-fed dipole arrays for system validation	91
B.3.	1 Description	91
B.3.	2 Numerical target values for cavity-fed dipole arrays	94
B.3.	3 Field and power density distribution patterns	94
B.3.4	4 Far-field radiation patterns	99
B.4	Pyramidal horns with slot arrays for system validation	101
B.4.	1 Description	101
B.4.	2 Numerical target values for pyramidal horns loaded with a slot array	103
B.4.	3 Field and power density distribution patterns	104
B.4.	4 Far-field radiation patterns	109
B.5	Antenna validation procedure	110
B.5.	1 General	110
B.5.	2 Objectives, scope, and usage specifications	111
B.5.	3 Antenna design	111
B.5.	4 Numerical targets	111
B.5.	5 Reference antennas calibration	111
B.5.	6 Antenna verification and life expectation	111
B.5.	7 Uncertainty budget considerations	111
B.6	Validation procedure for wideband signals	112
B.6.	1 General	112
B.6.	2 Validation signals	112
B.6.	3 Validation antennas and setup	112

IEC/IEEE 63195-1:2022 © IEC/IEEE 2022 - 5 -

B.6.4	Target values for validation antennas transmitting wideband signals	112
B.6.5	Wideband signal uncertainty	112
B.6.6	Validation procedure	113
Annex C (normative) Calibration and characterization of measurement probes	114
C.1	General	114
C.2	Calibration of waveguide probes	114
C.2.1	General	114
C.2.2	Sensitivity	114
C.2.3	Linearity	114
C.2.4	Lower detection limit	115
C.2.5	Isotropy	115
C.2.6	Response time	115
C.3	Calibration for isotropic scalar E-field or H-field probes	115
C.3.1	General	115
C.3.2	Sensitivity	
C 3 3	Isotropy	115
C 3 4	l inearity	116
C 3 5	Lower detection limit	116
C 3 6	Response time	116
C 4	Calibration of phasor E-field or H-field probes	116
C / 1	General	116
C 4 2	Sensitivity	116
C 4 3	Isotrony	117
C 4 4		1 1 7
C 4 5		/
0.4.0	Collibration uncontainty perometers a dards lots (020a18b a lo2 17a loss)	117
	Canoration uncertainty parameters	/
0.5.1		111
0.5.2	Input power to the antenna	/
0.5.3	Mismatch effect (input power measurement)	117
0.5.4	Gain and offset distance	118
C.5.5	Signal spectrum	118
C.5.6	Setup stability	118
C.5.7	Uncertainty for field impedance variations	119
C.6	Uncertainty budget template	119
Annex D (informative) Information on use of square or circular shapes for power	101
density av	eraging area in conformity evaluations	121
D.1	General	121
D.2	Method using computational analysis	121
D.3	Areas averaged with square and circular shapes on planar evaluation surface	121
D.4	Areas averaged with square and circular shapes on nonplanar evaluation surface	123
Annex E (informative) Reconstruction algorithms	125
Ě.1	General	125
E.2	Methodologies to extract local field components and power densities	125
 F 2 1	General	
E 2 2	Phase-less approaches	126
E 2 3	Approaches using F-field polarization ellipse measurements	126
F 2 4	Direct near-field measurements	126
<u>_</u>		

F 3	Forward transformation (propagation) of the fields	127
E 3 1	General	127
E.3.2	Field expansion methods	128
E 3 3	Field integral equation methods	128
E.4	Backward transformation (propagation) of the fields	
E.4.1	General	129
E.4.2	Field expansion methods – the plane wave expansion	129
E.4.3	Inverse source methods	130
E.5	Analytical reference functions	131
Annex F (normative) Interlaboratory comparisons	133
F.1	Purpose	133
F.2	Reference devices	133
F.3	Power setup	133
F.4	Interlaboratory comparison – procedure	133
Annex G	(informative) PD test and verification example	134
G.1	Purpose	134
G.2	DUT overview	134
G.3	Test system verification	134
G.4	Test setup	134
G.5	Power density results	134
G.6	Combined exposure (Total Exposure Ratio)	134
Annex H	informative) Applicability of plane-wave equivalent approximations	135
H.1	Objective	135
H.2	Method	135
H.3	Results	135
H.4	Discussion dards iteh ai/catalog/standards/sist/039a18bb-a1e2-47e1-accf-	137
Annex I (i and IEC/I	nformative) Rationales for concepts and methods applied in this document EEE 63195-2	138
l.1	Frequency range	138
1.2	Calculation of <i>sPD</i>	138
I.2.1	Application of the Poynting vector for calculation of incident power density	138
1.2.2	Averaging area	139
Bibliograp	hy	140
Figure 1 -	- Ouick Start Guide	20
Figure 2	- Simplified view of a generic measurement setup involving the use of	
reconstru	ction algorithms	38
Figure 3 - plane, as	- Cross-sectional view of SAM phantom for SAR evaluations at the reference described in IEC/IEEE 62209-1528:2020	42
Figure 4 - reference	 Cross-sectional view of SAM virtual phantom for PD evaluations at the plane (shell thickness is 2 mm everywhere, including at the pinna) 	42
Figure 5 - phantom	- Example reference coordinate system for the left-ear ERP of the SAM	44
Figure 6 -	- Example reference points and vertical and horizontal lines on a DUT	44
Figure 7 -	- Flow chart for test procedure in 7.3	46
Figure 8 -	- Flow chart for general measurement procedure in 7.4.1	49
Figure 9 -	- Flow chart for power density assessment methods in 7.4.2	50

- 6 - IEC/IEEE 63195-1:2022 © IEC/IEEE 2022

IEC/IEEE 63195-1:2022 © IEC/IEEE 2022 - 7 -

Figure 10 – SAR and power density evaluation at a point <i>r</i>	57
Figure 11 – Combining SAR (top) and power density (bottom) for the SAM phantom	57
Figure A.1 – Recommended accepted power measurement setup for relative system check, absolute system check and system validation	78
Figure A.2 – Equipment setup for measurement of forward power P_{f} and forward coupled power P_{fc}	78
Figure A.3 – Equipment setup for measuring the shorted reverse coupled power P_{rcs}	78
Figure A.4 – Equipment setup for measuring the power with the reference antenna	79
Figure A.5 – Port numbering for the <i>S</i> -parameter measurements of the directional coupler	80
Figure B.1 – Main dimensions for the cavity-fed dipole arrays – 30 GHz design	92
Figure B.2 – 10 GHz patterns of $ E_{total} $ and Re{S} _{total} for the cavity-fed dipole arrays at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the dielectric substrate	95
Figure B.3 – 30 GHz patterns of $ E_{total} $ and Re{ S } _{total} for the cavity-fed dipole arrays at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the dielectric substrate.	96
Figure B.4 – 60 GHz patterns of $ E_{total} $ and Re{ S } _{total} for the cavity-fed dipole arrays at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the dielectric substrate	97
Figure B.5 – 90 GHz patterns of $ E_{total} $ and Re{S} _{total} for the cavity-fed dipole arrays	
at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the dielectric substrate.	98
Figure B.6 – Far-field radiation patterns of a) 10 GHz, b) 30 GHz, c) 60 GHz, and d) 90 GHz cavity-fed dipole arrays	100
Figure B.7 – Main dimensions for the 0,15 mm stainless steel stencil with slot array	101
Figure B.8 – Main dimensions for the pyramidal horn antennas	102
Figure B.9 – 10 GHz patterns of $ E_{total} $ and Re{S} _{total} for the pyramidal horn loaded	
with a slot array at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the slot array	105
Figure B.10 – 30 GHz patterns of $ E_{total} $ and Re{ S } _{total} for the pyramidal horn loaded with a slot array at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the slot array	106
Figure B.11 – 60 GHz patterns of $ E_{total} $ and Re{S} _{total} for the pyramidal horn loaded	
with a slot array at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the slot array	107
Figure B.12 – 90 GHz patterns of $ E_{total} $ and Re{S} _{total} for the pyramidal horn loaded	
with a slot array at distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the slot array	108
Figure B.13 – Far-field radiation patterns of a) 10 GHz, b) 30 GHz, c) 60 GHz, and d) 90 GHz pyramidal horn loaded with a slot array	110
Figure D.1 – Schematic view of the assessment of the variation of <i>sPD</i> using square shape by rotating AUT (antenna under test)	121
Figure D.2 – Comparison of $psPD$ averaged using square versus circular shaped areas on planar evaluation surfaces	122
Figure D.3 – Example <i>PD</i> distributions with device next to ear evaluation surface	123
Figure D.4 – Comparison of $psPD$ averaged using cube cross-section (square-like) versus sphere cross-section (circular-like) shaped areas for device next to ear	
evaluation surface	124

Figure E.1 – Simulation (left) and forward transformation from measurements applying methods described in [29] (right) of power density in the xz -plane (above) and yz -plane (below) at a distance of 2 mm for a cavity-fed dipole array at 30 GHz (see Annex B)	127
Figure H.1 – $psPD_{pwe}$ / $psPD_{tot}$ as function of distance (in units of λ) from cavity-fed	
dipole array (CDA ['] ##G, left-side) and pyramidal horn with slot arrays (SH##G, right- side) operating at 10 GHz, 30 GHz, 60 GHz, and 90 GHz	137
Table 1 – Evaluation plan check-list	28
Table 2 – Minimum evaluation distance between the DUT antenna and the evaluation surface for which the plane wave equivalent approximation applies	50
Table 3 – Template of measurement uncertainty for power density measurements	70
Table 4 – Example measurement uncertainty budget for power density measurement results	72
Table A.1 – Example of power measurement uncertainty	81
Table A.2 – Communication signals for modulation response test	87
Table B.1 – Target values for pyramidal horn antennas at different frequencies	90
Table B.2 – Main dimensions for the cavity-fed dipole arrays at each frequency of interest	91
Table B.3 – Geometrical parameters of the cavity-fed dipole arrays at each frequency of interest	93
Table B.4 – Substrate and metallic block parameters for the cavity-fed dipole arrays at each frequency of interest	93
Table B.5 – Target values for the cavity-fed dipole arrays at 10 GHz, 30 GHz, 60 GHz, and 90 GHz	94
Table B.6 – Main dimensions for the stencil with slot array for each frequency	102
Table B.7 – Primary dimensions for the corresponding pyramidal horns at each col- frequency	103
Table B.8 – Target values for the pyramidal horns loaded with slot arrays at 10 GHz, 30 GHz, 60 GHz, and 90 GHz	104
Table C.1 – Uncertainty analysis of the probe calibration	119
Table D.1 – Phase shift values for the array antenna	123
Table E.1 – List of analytical reference functions and associated <i>psPD</i> n+ target values	131
Table E.2 – List of analytical reference functions and associated <i>psPD</i> tot+ target	
values	132
Table E.3 – List of analytical reference functions and associated <i>psPD</i> mod+ target	
values	132

IEC/IEEE 63195-1:2022 © IEC/IEEE 2022 - 9 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ASSESSMENT OF POWER DENSITY OF HUMAN EXPOSURE TO RADIO FREQUENCY FIELDS FROM WIRELESS DEVICES IN CLOSE PROXIMITY TO THE HEAD AND BODY (FREQUENCY RANGE OF 6 GHz TO 300 GHz) –

Part 1: Measurement procedure

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC document(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation.

IEEE Standards documents are developed within IEEE Societies and Standards Coordinating Committees of the IEEE Standards Association (IEEE SA) Standards Board. IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of IEEE and serve without compensation. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards. Use of IEEE Standards documents is wholly voluntary. *IEEE documents are made available for use subject to important notices and legal disclaimers* (see http://standards.ieee.org/ipr/disclaimers.html for more information).

IEC collaborates closely with IEEE in accordance with conditions determined by agreement between the two organizations. This Dual Logo International Standard was jointly developed by the IEC and IEEE under the terms of that agreement.

- 2) The formal decisions of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. The formal decisions of IEEE on technical matters, once consensus within IEEE Societies and Standards Coordinating Committees has been reached, is determined by a balanced ballot of materially interested parties who indicate interest in reviewing the proposed standard. Final approval of the IEEE standards document is given by the IEEE Standards Association (IEEE SA) Standards Board.
- 3) IEC/IEEE Publications have the form of recommendations for international use and are accepted by IEC National Committees/IEEE Societies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC/IEEE Publications is accurate, IEC or IEEE cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications (including IEC/IEEE Publications) transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC/IEEE Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC and IEEE do not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC and IEEE are not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or IEEE or their directors, employees, servants or agents including individual experts and members of technical committees and IEC National Committees, or volunteers of IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE SA) Standards Board, for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC/IEEE Publication or any other IEC or IEEE Publications.
- 8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.