INTERNATIONAL STANDARD

ISO 16672

Third edition 2020-06

Ophthalmic implants — Ocular endotamponades

Implants ophtalmiques — Produits de tamponnement endoculaires

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 16672:2020

https://standards.iteh.ai/catalog/standards/iso/5dc04c9/-5826-4367-8e8a-b817/03ee/0fd/iso-16672-2020

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 16672:2020

https://standards.iteh.ai/catalog/standards/iso/5dc04c97-5826-4367-8e8a-b81703ee70fd/iso-16672-2020

COPYRIGHT PROTECTED DOCUMENT

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Fores	word	:-
_		
1	Scope	
2	Normative references	
3	Terms and definitions	
4	Intended performance	3
5	Design attributes 5.1 General 5.2 Chemical description and contaminants 5.3 Density 5.4 Gaseous expansion 5.5 Interfacial tension 5.6 Kinematic viscosity 5.7 Dynamic viscosity 5.8 Molecular mass distribution 5.9 Particulates 5.10 Refractive index 5.11 Spectral transmittance 5.12 Surface tension	
	5.13 Vapour pressure Design evaluation The Standards	
6	Design evaluation 6.1 General	
	6.2 Evaluation of biological safety 6.2.1 General 6.2.2 Bacterial endotoxins test 6.2.3 Intraocular implantation test 6.2.4 Ethylene oxide 6.3 Clinical investigation	
7 /sta	Sterilization atalog/standards/iso/5dc04c97-5826-4367-8e8a-b81703ee70fd/iso-166	672-2020 7
8	Product stability	
9	Integrity and performance of the delivery system	
10	Packaging 10.1 Protection from damage during storage and transport 10.2 Maintenance of sterility in transit	8 8
11	Information supplied by the manufacturer	8
Anne	ex A (normative) Intraocular implantation test	10
	ex B (informative) Clinical investigation	
	ex C (informative) Method for quantifying incompletely fluorinated contaminants in	
	perfluorocarbon liquids	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 172, *Optics and photonics*, Subcommittee SC 7, *Ophthalmic optics and instruments*.

This third edition cancels and replaces the second edition (ISO 16672:2015), which has been technically revised.

The main changes compared to the previous edition are as follows: 67-8e8a-b81703ee70fd/iso-16672-2020

- a) the following terms and their definitions have been included: "secondary packaging", surgical invasive medical product" and "minimum utilization pressure";
- b) the subclause on chemical description and contaminants has been substantially revised;
- c) the bacterial endotoxin limit has been revised from 0,5 to 0,2 Endotoxin Units per ml;
- d) the total level of EO in the product has been revised: it shall not exceed 1,25 μ g/dose for EO and 5,0 μ g/dose for ethylene chlorohydrin (ECH);
- e) minimum utilization pressure has been included in the list of information supplied by the manufacturer:
- f) B.2.2 giving the clinical variables in a clinical investigation has been revised;
- g) Annex C "Method for quantifying incompletely fluorinated contaminants in perfluorocarbon liquids" has been added.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Ophthalmic implants — Ocular endotamponades

1 Scope

This document applies to ocular endotamponades (OE), a group of non-solid surgically invasive medical devices introduced into the vitreous cavity of the eye to flatten and position a detached retina onto the retinal pigment epithelium (RPE), or to tamponade the retina.

With regard to the safety and efficacy of OE, this document specifies requirements for their intended performance, design attributes, pre-clinical and clinical evaluation, sterilization, product packaging, product labelling and the information supplied by the manufacturer.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 10993-1, Biological evaluation of medical devices — Part 1: Evaluation and testing within a risk management process

ISO 10993-2, Biological evaluation of medical devices — Part 2: Animal welfare requirements

ISO 10993-6, Biological evaluation of medical devices — Part 6: Tests for local effects after implantation

ISO 11607-1, Packaging for terminally sterilized medical devices — Part 1: Requirements for materials, sterile barrier systems and packaging systems

ISO 13408-1, Aseptic processing of health care products — Part 1: General requirements

ISO 14155, Clinical investigation of medical devices for human subjects — Good clinical practice

ISO 14630, Non-active surgical implants — General requirements

ISO 14971, Medical devices — Application of risk management to medical devices

ISO 15223-1, Medical devices — Symbols to be used with medical device labels, labelling and information to be supplied — Part 1: General requirements

EN 1041+A1, Information supplied by the manufacturer with medical devices

OECD Guidelines for the Testing of Chemicals, Section 1: Physical-Chemical properties, Test No. 104: Vapour Pressure

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

3.1

delivery system

sealed container in which the product is supplied including any additional component provided to introduce the product into the eye

3.2

dynamic viscosity

quotient of shear stress and shear velocity

Note 1 to entry: The dynamic viscosity is expressed in pascal seconds (Pa·s).

3.3

interfacial tension

tension against liquids

Note 1 to entry: The interfacial tension is expressed in newton per metre (N/m).

3.4

kinematic viscosity

quotient of dynamic viscosity (3.2) and gravity

Note 1 to entry: The kinematic viscosity is expressed in square metres per second (m²/s).

3.5

ocular endotamponade

OE

non-solid *surgically invasive medical device* (3.11) introduced into the vitreous cavity of the eye to flatten and position a detached retina onto the retinal pigment epithelium (RPE), or to tamponade the retina

3.6

primary container

container providing mechanical and microbiological protection of the content

3.7

sterile barrier

minimum package that prevents ingress of microorganisms and allows aseptic presentation of the product at the point of use

3.8

storage container

part of the packaging intended to protect the device during transport and storage, containing the *sterile barrier* (3.7)

3.9

secondary packaging

container external to and providing protection and support for the *primary container* (3.6)

3.10

surface tension

tension against air

Note 1 to entry: Surface tension is expressed in newton per metre (N/m).

3 11

surgically invasive medical device

invasive device which penetrates inside the body through the surface with the aid or in the context of a surgical operation

3.12

vapour pressure

pressure exerted by the vapour of a liquid OE when in equilibrium with the liquid OE

Note 1 to entry: Vapour pressure is expressed in pascal (Pa) at (35 ± 2) °C.

3.13

minimum utilization pressure

limiting value of the pressure below which the gas or gases mixture shall no longer be withdrawn from the container for its intended use

4 Intended performance

The general requirements for the intended performance of non-active surgical implants specified in ISO 14630 shall apply.

This document describes surgically invasive medical devices that are compatible with the internal ocular environment and, through a primary mechanical action, are used to reposition and/or tamponade a detached retina. They are used either intra-operatively and removed at the end of surgery, as in the case of perfluorocarbon liquids, or are designed to remain in the vitreous cavity until removal at a later date as in the case of silicone oils, or they are completely absorbed as in the case of gaseous OE.

The manufacturer shall describe and document the functional characteristics of the OE in terms of its chemical composition and physical properties, the intended surgical applications, the conditions of use and the maximum duration of contact with, and effects upon ocular tissues, with particular regard to safety.

All available published standards and published scientific and clinical literature, validated test results, clinical investigations, and pre-clinical and clinical evaluations shall be considered in determining the intended device.

5 Design attributes

ISO 16672:2020

os://standards.iteh.ai/catalog/standards/iso/5dc04c97-5826-4367-8e8a-b81703ee70fd/iso-16672-2020

5.1 General

The general requirements for non-active surgical implants specified in ISO 14630 shall apply.

All testing requirements specified below shall be performed with finished and sterilized product, ready for release. Any analytical methods utilized shall be validated.

NOTE Tests described herein are intended to apply when qualifying materials and not necessarily as a routine quality assurance/control programme.

5.2 Chemical description and contaminants

The manufacturer shall provide a description of each of the components in the finished product, and their respective quality specifications and concentrations.

If the component material is derived from biological sources, the organism from which it is obtained shall be stated along with its source.

Whenever possible, for all polymers, the backbone, any side groups and end-groups shall be identified.

The identification of potentially hazardous chemical or biological contaminants shall be determined by a risk analysis. For raw materials of biological origin, these impurities can include proteins, nucleic acids, or other biological materials.

Contaminants of the finished product derived from the source materials or from the manufacturing process, such as by-products, residual monomers, cross-linking agents, catalysts, products derived from

auto-oxidation processes or from containers transport and packaging that are potentially hazardous either systemically or to the tissues of the eye, shall be identified and quantified, whenever possible, and their concentration in the finished product reported. Limits for identified contaminants shall be set, justified and documented. Testing of the biological effects of these contaminants during evaluation of biological safety may be required if the risk analysis determines it necessary. Chemical changes during transport and storage shall be considered. Any contaminant being identified to cause, directly or by being the source for other contaminants, considerable harm to the patient, the user or any third party shall be reduced to a level that the health risk associated with the contaminant is considered acceptable.

The following list, although not exhaustive, provides some information on likely contaminants of common endotamponade materials: Materials of biological origin may contain proteins, nucleic acids, or other biological materials as contaminants. Perfluorocarbon liquids may contain oxygen containing compounds and incompletely fluorinated contaminants, including HF. Specifically incompletely fluorinated contaminants, including HF, are likely to occur and they bear a high risk for the patient already at the ppm level. Therefore, the concentration of incompletely fluorinated contaminants, including HF, shall be as low as possible. Different methods can be used for which the specific limits need to be specified based on the risk analysis. In Annex C a method is described for which a level of 10 ppm has been published, to assure material safety in regard of the aforementioned impurities.

Silicone oils may contain catalysts, heavy metals, residual monomers and short chain oligomers and polymers as a result from their synthesis.

For any liquid OE, control over synthesis of the tamponade material according to applicable standards and monographs and analytically controlled purification procedures according to applicable standards or monographs are minimum requirements.

5.3 Density (https://standards.iteh.ai)

The density of liquid forms of OE shall be specified in kilograms per cubic metre (kg/m³).

5.4 Gaseous expansion

ISO 16672:2020

For gaseous forms of OE the intraocular gaseous expansion at (35 ± 2) °C and its dependence on 020 atmospheric pressure shall be expressed.

5.5 Interfacial tension

Where applicable, the interfacial tension against water shall be determined and expressed in newton per metre (N/m) at (35 ± 2) °C.

5.6 Kinematic viscosity

Where applicable, the kinematic viscosity at (35 ± 2) °C shall be determined and expressed in millimetres squared per second (mm²/s).

5.7 Dynamic viscosity

For viscous or viscoelastic OE, the dynamic viscosity shall be determined at (35 ± 2) °C in the frequency range between 0.01 s⁻¹ and 100 s⁻¹ and expressed in millipascal second (mPa·s).

5.8 Molecular mass distribution

If the OE is a polymer, the average molecular mass, the range of molecular mass distribution and the polydispersity shall be reported.

The manufacturer shall conduct and report such additional tests as necessary to provide an adequate description of the molecular mass distribution of the components in the finished product. Whenever possible, standard methods shall be named and used.

5.9 Particulates

A risk assessment shall evaluate the potential for the formation of and contamination by particulates in the product throughout the life of the product including manufacture, transport and storage under specified conditions, and during use. The potential for associated hazards shall be described.

The manufacturer shall characterize and set limits for the types, range of sizes and levels of particles present in the finished product. Limits according to USP <789> are deemed acceptable. Alternatively, the manufacturer shall investigate the level of particles in the clinical study. For each type of particle present, a limit which has been validated in a clinical study shall be set and an adequate justification for the limit shall be documented.

5.10 Refractive index

Where applicable, the refractive index between OE and air shall be measured with a refractometer at (35 ± 2) °C and (546 ± 10) nm or (589 ± 10) nm wavelength.

5.11 Spectral transmittance

The spectral transmittance of the OE shall be measured by transmission spectrophotometry over the range 300 nm to 1 100 nm. Results shall be presented graphically, plotting percentage transmission against wavelength.

5.12 Surface tension

Where applicable, the surface tension shall be determined and expressed in newton per metre (N/m) at (35 ± 2) °C.

http: **5.13 Vapour pressure** 2/standards/iso/5dc04c97-5826-4367-8e8a-b81703ee70fd/iso-16672-2020

If the vapour pressure exceeds 100 Pa, the vapour pressure shall be determined and expressed in pascal (Pa) at (35 ± 2) °C (OECD Test No. 104: Vapour Pressure).

6 Design evaluation

6.1 General

The OE shall be evaluated for safety by performing a risk assessment in accordance with ISO 14971. The results of the risk assessment shall determine the tests required to evaluate the safety of the OE.

The risk assessment shall take into consideration the following:

- a) the type of product and the location and duration of intraocular contact;
- b) potential interactions of the OE with other materials and energy sources, e.g. laser likely to be used in ophthalmic surgery;
- c) for intraocular gases, any impurity profile changes as the gas is withdrawn from the tank.
 - NOTE Impurity profile changes can occur as the concentration of the chemical species changes due to the differences in vapour pressure as the tank is depleted.

The OE shall be evaluated to demonstrate that the intended performance is achieved. The requirements for evaluation of non-active implants specified in ISO 14630 shall apply.

6.2 Evaluation of biological safety

6.2.1 General

If the OE is of hydrophobic nature, special consideration shall be taken when performing biocompatibility testing.

The relevant biocompatibility endpoints specified in ISO 10993-1 and identified by the risk analysis shall be taken into account when selecting the tests to evaluate the biological safety of an OE.

NOTE 1 Based upon the typical clinical applications in the posterior segment, OE are categorized as "Implant devices, tissue/bone". The tests for this and other categories of devices identified in Table A.1 of ISO 10993-1:2018 are for guidance only; they do not represent maximum or minimum test requirements.

NOTE 2 To evaluate the biological safety of perfluorocarbon liquids (PFCL), their hydrophobic and volatile nature will have to be taken in consideration. Several methods to evaluate the cytotoxicity of these particular OE including direct contact and extractive methods are described in References [8], [9] and ISO 10993-5.

6.2.2 Bacterial endotoxins test

Where applicable, the OE shall be evaluated for the presence of bacterial endotoxins using the Limulus Amoebocyte Lysate (LAL) test, in accordance with applicable pharmacopoeias or an equivalent validated test procedure [1][2][3]. Any product that exceeds a bacterial endotoxin limit of 0,2 Endotoxin Units (EU) per ml fails the test.

6.2.3 Intraocular implantation test Teh Standards

Tests for intraocular irritation, inflammation, intraocular pressure (IOP) and other local effects of the OE shall be conducted in a suitable animal model, in accordance with animal welfare requirements specified in ISO 10993-2.

Due to vascularisation differences between the human retina and the rabbit retina an alternate suitable animal should be considered, especially for non-aqueous substances.

The particular requirements of the intraocular implantation test are specified in Annex A. //so-16672-2020

The study design shall mirror the intended clinical use as closely as possible.

The study design should assess the intra-operative and postoperative intraocular irritation, inflammation, and local effects of the ophthalmic surgery with comparative use of the OE under evaluation and a control OE which is a well-documented OE of the same type as the OE under investigation, marketed widely for at least five years for the same use.

The volume of OE used should simulate the intended use, accounting for ocular volume differences between the human and animal models.

The post-surgical irritation, inflammation, and local effects shall be monitored and graded at intervals appropriate to the duration of the intended use. All adverse events shall be documented.

The OE shall show intraocular irritation, inflammation and local effects results comparable to or less than a control OE of the same intended use. If the OE induces intraocular irritation, inflammation and local effects in excess of the control OE, these should be justified by risk benefit analysis.

6.2.4 Ethylene oxide

If ethylene oxide (EO) is used during the manufacturing of ingredients or in justified sterilization of the packaging, the total level of EO in the product shall not exceed 1,25 μ g/dose for EO and 5,0 μ g/dose for ethylene chlorohydrin (ECH).