
Programming languages — Extensions
to C++ for modules
Langages de programmation — Extensions C++ pour les modules

ISO/IEC TS
21544

First edition
2018-05

Reference number
ISO/IEC TS 21544:2018(E)

TECHNICAL
SPECIFICATION

© ISO/IEC 2018

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 21544:2018
https://standards.iteh.ai/catalog/standards/sist/1ee917c2-6fdb-4fc2-82e2-

33645a4273d9/iso-iec-ts-21544-2018

ii © ISO/IEC 2018 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2018, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

ISO/IEC TS 21544:2018(E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 21544:2018
https://standards.iteh.ai/catalog/standards/sist/1ee917c2-6fdb-4fc2-82e2-

33645a4273d9/iso-iec-ts-21544-2018

ISO/IEC TS 21544:2018

Contents
Foreword iv

1 Scope 1

2 Normative references 2

3 Terms and definitions 3

4 General 4
4.1 Implementation compliance . 4
4.2 Acknowledgments . 4

5 Lexical conventions 5
5.1 Separate translation . 5
5.2 Phases of translation . 5
5.11 Keywords . 7

6 Basic concepts 8
6.1 Declarations and definitions . 8
6.2 One-definition rule . 8
6.3 Scope . 9
6.4 Name lookup . 9
6.5 Program and linkage . 11
6.6 Start and termination . 12

10 Declarations 13
10.1 Specifiers . 13
10.3 Namespaces . 13
10.7 Modules . 14

12 Classes 24
12.2 Class members . 24

16 Overloading 25
16.5 Overloaded operators . 25

17 Templates 26
17.6 Name resolution . 26

Contents c© ISO/IEC 2018 — All rights reserved iii

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 21544:2018
https://standards.iteh.ai/catalog/standards/sist/1ee917c2-6fdb-4fc2-82e2-

33645a4273d9/iso-iec-ts-21544-2018

ISO/IEC TS 21544:2018

Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
The procedures used to develop this document and those intended for its further maintenance are described in
the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of
document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC
Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on the
ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and ex-
pressions related to conformity assessment, as well as information about ISO’s adherence to the World
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL:
www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee
SC 22, Programming languages, their environments and system software interfaces.

c© ISO/IEC 2018 — All rights reserved iv

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 21544:2018
https://standards.iteh.ai/catalog/standards/sist/1ee917c2-6fdb-4fc2-82e2-

33645a4273d9/iso-iec-ts-21544-2018

ISO/IEC TS 21544:2018

1 Scope [intro.scope]
1 This document describes extensions to the C++ Programming Language (Clause 2) that introduce modules,

a functionality for designating a set of translation units by symbolic name and ability to express symbolic
dependency on modules, and to define interfaces of modules. These extensions include new syntactic forms
and modifications to existing language semantics.

2 ISO/IEC 14882 provides important context and specification for this document. This document is written as
a set of changes against that specification. Instructions to modify or add paragraphs are written as explicit
instructions. Modifications made directly to existing text from ISO/IEC 14882 use underlining to represent
added text and strikethrough to represent deleted text.

Scope c© ISO/IEC 2018 — All rights reserved 1

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 21544:2018
https://standards.iteh.ai/catalog/standards/sist/1ee917c2-6fdb-4fc2-82e2-

33645a4273d9/iso-iec-ts-21544-2018

ISO/IEC TS 21544:2018

2 Normative references [intro.refs]
1

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

—(1.1) ISO/IEC 14882:2017, Programming Languages – C++

ISO/IEC 14882:2017 is hereafter called the C++ Standard. The numbering of clauses, subclauses, and
paragraphs in this document reflects the numbering in the C++ Standard. References to clauses and
subclauses not appearing in this document refer to the original, unmodified text in the C++ Standard.

Normative references c© ISO/IEC 2018 — All rights reserved 2

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 21544:2018
https://standards.iteh.ai/catalog/standards/sist/1ee917c2-6fdb-4fc2-82e2-

33645a4273d9/iso-iec-ts-21544-2018

ISO/IEC TS 21544:2018

3 Terms and definitions [intro.defs]
No terms and definitions are listed in this document.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at http://www.electropedia.org

Terms and definitions c© ISO/IEC 2018 — All rights reserved 3

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 21544:2018
https://standards.iteh.ai/catalog/standards/sist/1ee917c2-6fdb-4fc2-82e2-

33645a4273d9/iso-iec-ts-21544-2018

ISO/IEC TS 21544:2018

4 General [intro]
4.1 Implementation compliance [intro.compliance]

1 Conformance requirements for this document are those defined in ISO 14882:2017, 4.1 except that references
to the C++ Standard therein shall be taken as referring to the document that is the result of applying the
editing instructions. Similarly, all references to the C++ Standard in the resulting document shall be taken
as referring to the resulting document itself. [Note: Conformance is defined in terms of the behavior of
programs. —end note]

4.2 Acknowledgments [intro.ack]
1 This document is based, in part, on the design and implementation described in the paper P0142R0 “A

Module System for C++”.

§ 4.2 c© ISO/IEC 2018 — All rights reserved 4

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 21544:2018
https://standards.iteh.ai/catalog/standards/sist/1ee917c2-6fdb-4fc2-82e2-

33645a4273d9/iso-iec-ts-21544-2018

ISO/IEC TS 21544:2018

5 Lexical conventions [lex]
5.1 Separate translation [lex.separate]
Modify paragraph 5.1/2 as follows

2 [Note: Previously translated translation units and instantiation units can be preserved individ-
ually or in libraries. The separate translation units of a program communicate (6.5) by (for
example) calls to functions whose identifiers have external or module linkage, manipulation of
objects whose identifiers have external or module linkage, or manipulation of data files. Transla-
tion units can be separately translated and then later linked to produce an executable program
(6.5). — end note]

5.2 Phases of translation [lex.phases]
Modify bullet 7 of paragraph 5.2/1 as follows:

7. White-space characters separating tokens are no longer significant. Each preprocessing
token is converted into a token (5.6). The resulting tokens are syntactically and semanti-
cally analyzed and translated as a translation unit. [Note: The process of analyzing and
translating the tokens may occasionally result in one token being replaced by a sequence
of other tokens (17.2). — end note] It is implementation-defined whether the source for
module interface units for modules on which the current translation unit has an interface
dependency (10.7.3) is required to be available. [Note: Source files, translation units and
translated translation units need not necessarily be stored as files, nor need there be any
one-to-one correspondence between these entities and any external representation. The
description is conceptual only, and does not specify any particular implementation. — end
note]

Add new paragraphs as follows:

2 The result of processing a translation unit from phases 1 through 7 is a directed graph called
the abstract semantics graph of the translation unit:

— Each vertex, called a declset, is a citation (10.7.3), or a collection of non-local declarations
and redeclarations (Clause 10) declaring the same entity or other non-local declarations of
the same name that do not declare an entity.

— A directed edge (D1, D2) exists in the graph if and only if the declarations contained in D2
declare an entity mentioned in a declaration contained in D1.

The abstract semantics graph of a module is the subgraph of the abstract semantics graph of its
module interface unit generated by the declsets the declarations of which are in the purview of
that module interface unit. [Note: The abstract semantics graphs of modules, as appropriately
restricted (10.7.6), are used in the processing of module-import-declarations (10.7.3) and module
implementation units. — end note]

3 An entity is mentioned in a declaration D if that entity is a member of the basis of D, a set of
entities determined as follows:

— If D is a namespace-definition, the basis is the union of the bases of the declarations in its
namespace-body.

— If D is a nodeclspec-function-declaration,

— if D declares a contructor, the basis is the union of the type-bases of the parameter
types

§ 5.2 c© ISO/IEC 2018 — All rights reserved 5

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 21544:2018
https://standards.iteh.ai/catalog/standards/sist/1ee917c2-6fdb-4fc2-82e2-

33645a4273d9/iso-iec-ts-21544-2018

ISO/IEC TS 21544:2018

— if D declares a conversion function, the basis is the type-basis of the return type
— otherwise, the basis is empty.

— If D is a function-definition, the basis is the type-basis of the function’s type

— If D is a simple-declaration

— if D declares a typedef-name, the basis is the type-basis of the aliased type
— if D declares a variable, the basis is the type-basis of the type of that variable
— if D declares a function, the basis is the type-basis of the type of that function
— if D defines a class type, the basis is the union of the type-bases of its direct base

classes (if any), and the bases of its member-declarations.
— otherwise, the basis is the empty set.

— If D is a template-declaration, the basis is the union of the basis of its declaration, the set
consisting of the entities (if any) designated by the default template template arguments,
the default non-type template arguments, the type-bases of the default type template ar-
guments. Furthermore, if D declares a partial specialization, the basis also includes the
primary template.

— If D is an explicit-instantiation or an explicit-specialization, the basis includes the primary
template, and all the entities in the basis of the declaration of D.

— If D is a linkage-specification, the basis is the union of all the bases of the declarations
contained in D.

— If D is a namespace-alias-definition, the basis is the singleton consisting of the namespace
denoted by the qualified-namespace-specifier.

— If D is a using-declaration, the basis is the union of the bases of all the declarations intro-
duced by the using-declarator.

— If D is a using-directive, the basis is the singleton consisting of the norminated namespace.

— If D is an alias-declaration, the basis is the type-basis of its defining-type-id.

— Otherwise, the basis is empty.

The type-basis of a type T is

— If T is a fundamental type, the type-basis is the empty set.

— If T is a cv-qualified type, the type-basis is the type-basis of the unqualified type.

— If T is a member of an unknown specialization, the type-basis is the type-basis of that
specialization.

— If T is a class template specialization, the type-basis is the union of the set consisting of
the primary template and the template template arguments (if any) and the non-dependent
non-type template arguments (if any), and the type-bases of the type template arguments
(if any).

— If T is a class type or an enumeration type, the type-basis is the singleton {T}.
— If T is a reference to U , or a pointer to U , or an array of U , the type-basis is the type-basis

of U .

— If T is a function type, the type-basis is the union of the type-basis of the return type and
the type-bases of the parameter types.

— If T is a pointer to data member of a class X, the type-basis is the union of the type-basis
of X and the type-basis of member type.

— If T is a pointer to member function type of a class X, the type-basis is the union of the
type-basis of X and the type-basis of the function type.

— Otherwise, the type-basis is the empty set.

4 [Note: The basis of a declaration includes neither non-fully evaluated expressions nor entities
used in those expressions. [Example:

§ 5.2 c© ISO/IEC 2018 — All rights reserved 6

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 21544:2018
https://standards.iteh.ai/catalog/standards/sist/1ee917c2-6fdb-4fc2-82e2-

33645a4273d9/iso-iec-ts-21544-2018

ISO/IEC TS 21544:2018

const int size = 2;
int ary1[size]; // size not in ary1’s basis
constexpr int identity(int x) { return x; }
int ary2[identity(2)]; // identity not in ary2’s basis

template<typename> struct S;
template<typename, int> struct S2;
constexpr int g(int);

template<typename T, int N>
S<S2<T, g(N)>> f(); // f’s basis: {S, S2}

— end example] — end note]

5.11 Keywords [lex.key]
In 5.11, add these two keywords to Table 5 in paragraph 5.11/1: module and import.
Modify note in paragraph 5.11/1 as follows:

1 ...

[Note: The export and register keywords are is unused but are is reserved for future use. — end
note]

§ 5.11 c© ISO/IEC 2018 — All rights reserved 7

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 21544:2018
https://standards.iteh.ai/catalog/standards/sist/1ee917c2-6fdb-4fc2-82e2-

33645a4273d9/iso-iec-ts-21544-2018

ISO/IEC TS 21544:2018

6 Basic concepts [basic]
Modify paragraph 6/3 as follows:

3 An entity is a value, object, reference, function, enumerator, type, class member, bit-field, tem-
plate, template specialization, namespace, module, or parameter pack.

Modify paragraph 6/4 as follows:

4 A name is a use of an identifier (5.10), operator-function-id (16.5), literal-operator-id (16.5.8),
conversion-function-id (15.3.2), or template-id (17.2), or module-name (10.7) that denotes an
entity or label (9.6.4, 9.1).

Add a sixth bullet to paragraph 6/8 as follows:
– they are module-names composed of the same dotted sequence of identifiers.

6.1 Declarations and definitions [basic.def]
Modify paragraph 6.1/1 as follows:

1 A declaration (Clause 10) may introduce one or more names into a translation unit or redeclare
names introduced by previous declarations. If so, the declaration specifies the interpretation
and attributessemantic properties of these names. [...]

Append the following two bullets to paragraph 6.1/2:

2 A declaration is a definition unless

— ...

— it is an explicit specialization (17.7.3) whose declaration is not definition.,

— it is a module-import-declaration,

— it is a proclaimed-ownership-declaration.

[Example:

import std.io; // make names from std.io available
export module M; // toplevel declaration for M
export struct Point { // define and export Point

int x;
int y;

};

— end example]

6.2 One-definition rule [basic.def.odr]
Replace paragraph 6.2/1 with:

1 A variable, function, class type, enumeration type, or template shall not be defined where a prior
definition is reachable (6.4).

Modify opening of paragraph 6.2/6 as follows

§ 6.2 c© ISO/IEC 2018 — All rights reserved 8

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 21544:2018
https://standards.iteh.ai/catalog/standards/sist/1ee917c2-6fdb-4fc2-82e2-

33645a4273d9/iso-iec-ts-21544-2018

	œ�ß[]˝�¼z^C0u&ﬁ˘÷š�áÁﬁ2$òz/Gç¼Q‚c?�Iðl•��¾Ù£zø¦¥nﬁóOv˙T�{�î�Ï⁄µPºłæQ��ó2À¡TŸp�5;/����Ñæ×,˘$

