

SLOVENSKI STANDARD SIST EN IEC 62232:2023

01-januar-2023

Nadomešča: SIST EN 62232:2019

Določitev RF poljske jakosti, gostote moči in SAR v okolici baznih postaj za namene ocenjevanja izpostavljenosti ljudi

Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure

Bestimmung der HF-Feldstärke, der Leistungsdichte und der spezifischen Absorptionsrate (SAR) in der Nachbarschaft von Funkkommunikations-Basisstationen zur Ermittlung der menschlichen Exposition

Détermination de l'intensité de champ de radiofréquences, de la densité de puissance et du DAS à proximité des stations de base de radiocommunication dans le but d'évaluer l'exposition humaine

Ta slovenski standard je istoveten z: EN IEC 62232:2022

ICS:

13.280	Varstvo pred sevanjem
17.240	Merjenje sevanja

Radiation protection Radiation measurements

SIST EN IEC 62232:2023

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN IEC 62232:2023</u>

https://standards.iteh.ai/catalog/standards/sist/71394d1d-d403-4e0f-aff9-faaa7c9f713b/sisten-iec-62232-2023

SIST EN IEC 62232:2023

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN IEC 62232

November 2022

ICS 13.280; 17.240

Supersedes EN 62232:2017

English Version

Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure (IEC 62232:2022)

Détermination de l'intensité de champ de radiofréquences, de la densité de puissance et du DAS à proximité des stations de base dans le but d'évaluer l'exposition humaine (IEC 62232:2022) Bestimmung der HF-Feldstärke, der Leistungsdichte und der spezifischen Absorptionsrate (SAR) in der Nachbarschaft von Funkkommunikations-Basisstationen zur Ermittlung der menschlichen Exposition (IEC 62232:2022)

This European Standard was approved by CENELEC on 2022-11-18. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

https://standards.iteh.ai/catalog/standards/sist/71394d1d-d403-4e0f-aff9-faaa7c9f713b/sist-

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

EN IEC 62232:2022 (E)

European foreword

The text of document 106/576/FDIS, future edition 3 of IEC 62232, prepared by IEC/TC 106 "Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62232:2022.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2023-08-18 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2025-11-18 document have to be withdrawn

This document supersedes EN 62232:2017 and all of its amendments and corrigenda (if any).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website.

iTeh STANDARD PREVIEW Endorsement notice

The text of the International Standard IEC 62232:2022 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following note has to be added for the standard indicated:

ISO/IEC 17025 NOTE Harmonized as EN ISO/IEC 17025

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cenelec.eu</u>.

Publication	<u>Year</u>	Title	<u>EN/HD</u>	Year
IEC/IEEE 62209- 1528	Teh	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-worn wireless communication devices - Part 1528: Human models, instrumentation and procedures (Frequency range of 4 MHz to 10 GHz)	EN IEC/IEEE 62209- 1528	-
IEC 62209-3 https://standards	s.iteh.ai/o	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz)	EN IEC 62209-3 0f-aff9-faaa7c9f713b	/sist-
IEC 62311	-	Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz to 300 GHz)	EN IEC 62311	-
IEC 62479	-	Assessment of the compliance of low- power electronic and electrical equipment with the basic restrictions related to human exposure to electromagnetic fields (10 MHz to 300 GHz)	EN 62479	-
IEC/IEEE 62704-1	-	Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 1: General requirements for using the finite difference time-domain (FDTD) method for SAR calculations	-	-

SIST EN IEC 62232:2023

EN IEC 62232:2022 (E)

Publication	<u>Year</u>	Title	<u>EN/HD</u> Y	ear
IEC/IEEE 62704-2	-	Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 2: Specific requirements for finite difference time domain (FDTD) modelling of exposure from vehicle mounted antennas	-	-
IEC/IEEE 62704-3	-	Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 3: Specific requirements for using the finite difference time domain (FDTD) method for SAR calculations of mobile phones	-	-
IEC/IEEE 62704-4	-	Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communication devices, 30 MHz to 6 GHz - Part 4: General requirements for using the finite element method for SAR calculations	-	-
IEC/IEEE 63195-1	Teh	IEC/IEEE 63195-1 ED1: Measurement procedure for the assessment of power density of human exposure to radio frequency fields from wireless devices operating in close proximity to the head and body – Frequency range of 6 GHz to 300 GHz		-
IEC/IEEE 63195-2	nen.al/	IEC/IEEE 63195-2 ED1: Determining the power density of the electromagnetic field associated with human exposure to wireless devices operating in close proximity to the head and body using computational techniques, 6 GHz to 300 GHz	01-a119-1aaa / C91 / 130/SI -	-

Edition 3.0 2022-10

INTERNATIONAL STANDARD

Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure

<u>SIST EN IEC 62232:2023</u>

https://standards.iteh.ai/catalog/standards/sist/71394d1d-d403-4e0f-aff9-faaa7c9f713b/sisten-iec-62232-2023

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 13.280; 17.240

ISBN 978-2-8322-5778-4

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	REWO	۶D	. 16
IN	TRODU	CTION	. 18
1	Scope	3	. 19
2	Norm	ative references	. 20
3	Terms	s and definitions	.21
4	Symb	ols and abbreviated terms	. 36
	4.1	Physical quantities	. 36
	4.2	Constants	.36
	4.3	Abbreviated terms	. 36
5	How t	o use this document	. 39
	5.1	Quick start guide	. 39
	5.2	RF evaluation purpose categories	.42
	5.3	Implementation case studies	.42
6	Evalu	ation processes for product compliance, product installation compliance and	
	in-siti	I RF exposure assessments	.42
	6.1	Evaluation process for product compliance	.42
	6.1.1	General	.42
	6.1.2	Establishing compliance boundaries	.42
	6.1.3	Iso-surface compliance boundary definition	.43
	6.1.4	Simple compliance boundaries	.43
	6.1.5	Methods for establishing the compliance boundary	.45
	6.1.6	Direction for the SIST EN: IEC 62232-2023	.49
	6.1.7	Reporting for product compliance	.49 t _e o
	6.2	Evaluation process used for product installation compliance	.50
	0.2.1	General avaluation procedure for product installations	.50
	0.2.2	General evaluation procedure for product installations	.50
	0.2.3	transmitted power or EIRP	. 52
	6.2.4	Product installation data collection	.55
	6.2.5	Simplified product installation evaluation process	.56
	6.2.6	Assessment area selection	. 59
	6.2.7	Measurements	. 60
	6.2.8	Computations	. 62
	6.2.9	Uncertainty	. 62
	6.2.10) Reporting for product installation compliance	.63
	6.3	In-situ RF exposure evaluation or assessment process	.64
	6.3.1	General	. 64
	6.3.2	In-situ measurement process	.64
	6.3.3	Site analysis	.65
	6.3.4	Case A evaluation	.66
	6.3.5	Case B evaluation	.66
	6.3.6	Uncertainty	.67
	6.3.7	Reporting	.67
	б.4	Averaging procedures	.67
	6.4.1	Spatial averaging	.67
7	6.4.2	I ime averaging	.68
1	Deter	mining the evaluation method	.68

7.1	Overview	68
7.2	Process to determine the evaluation method	68
7.2.1	General	68
7.2.2	2 Establishing the evaluation points in relation to the source-environment plane	69
7.2.3	S Exposure metric selection	70
8 Eval	uation methods	71
8.1	General	71
8.2	Measurement methods	72
8.2.1	General	72
8.2.2	2 RF field strength and power density measurements	72
8.2.3	SAR measurements	73
8.3	Computation methods	74
8.4	Methods for assessment based on actual maximum approach	76
8.4.1	General requirements	76
8.4.2	2 Actual transmitted power or EIRP monitoring	76
8.4.3	Actual transmitted power or EIRP control	77
8.5	Methods for the assessment of RF exposure to multiple sources	78
8.6	Methods for establishing the BS transmitted power or EIRP	79
9 Unce	ertainty	80
10 Rep	orting. I. C. A. S. C. A. N. D. A. R. D. P. R. K. V. R. V.	80
10 1	General requirements	80
10.2	Report format (Standards.iten.al)	81
10.3	Opinions and interpretations	82
Annex A	(informative) Source-environment plane and guidance on the evaluation	
method s	election	83
A.1	Guidance on the source-environment plane	83
A.1.1	1 General	83
A.1.2	2 Source-environment plane example	83
A.1.3	3 Source regions	84
A.2	Select between computation or measurement approaches	90
A.3	Select measurement method	91
A.3.	1 Selection stages	91
A.3.2	2 Selecting between RF field strength, power density and SAR measurement approaches	91
A.3.3	3 Selecting between broadband and frequency selective measurement	92
A.3.4	4 Selecting RF field strength measurement procedures	93
A.4	Select computation method	93
A.5	Additional considerations	95
A.5.	1 Simplicity	95
A.5.2	2 Evaluation method ranking	95
A.5.3	Applying multiple methods for RF exposure evaluation	95
Annex B	(normative) Evaluation methods	96
B.1	Overview	96
B.2	General	96
B.2.*	1 Coordinate systems and reference points	96
B.2.2	2 Variables	97
B.3	RF exposure evaluation principles	98
B.3.	1 Simple calculation of RF field strength and power density	98

B.3.2	Measurement of RF field strength and power density	102
B.3.3	Spatial averaging	104
B.3.4	Time averaging	107
B.3.5	Comparing measured and computed values	109
B.3.6	Personal RF monitors	109
B.4 RF	field strength and power density measurements	109
B.4.1	Applicability of RF field strength and power density measurements	109
B.4.2	In-situ RF exposure measurements	109
B.4.3	Laboratory based RF field strength and power density measurements	121
B.4.4	RF field strength and power density measurement uncertainty	131
B.5 SA	R measurements	136
B.5.1	Overview of SAR measurements	136
B.5.2	SAR measurement requirements	136
B.5.3	SAR measurement description	138
B.5.4	SAR measurement uncertainty	143
B.6 Bas	sic computation methods	146
B.6.1	General	146
B.6.2	Basic computation formulas for RF field strength or power density evaluation	146
B.6.3	Basic whole-body SAR and peak spatial-average SAR evaluation formulas	153
B.6.4	Basic compliance boundary assessment method for BS using parabolic dish antennas	
B.6.5	Basic compliance boundary assessment method for intentionally radiating cables	163
B7 Adv	vanced computation methods IEC 62232-2023	164
htti B 7/1 and	a Generalai/catalog/standards/sist/71394d1d-d403-4e0f-aff9-faaa7c9f713b	/sid64
B 7 2	Synthetic model and ray tracing algorithms	164
B 7 3	Full wave RF exposure computation	171
B 7 4	Full wave SAR computation	180
B8 Ext	rapolation from the evaluated values to the maximum or actual values	185
B 8 1	Extrapolation method	185
B.8.2	Extrapolation to maximum in-situ RF field strength or power density using broadband measurements	187
B.8.3	Extrapolation to maximum in-situ RF field strength / power density using frequency or code selective measurements	187
R 8 4	Influence of traffic in real operating network	188
B 8 5	Extrapolation for massive MIMO and beamforming BS	189
B 8 6	Maximum exposure extrapolation with dynamic spectrum sharing (DSS)	191
B 9 Gu	idance for implementing the actual maximum approach	192
R 9 1	BS actual FIRP evaluation assumptions	102
B 9 2	Technology duty-cycle factor description	102
B.9.3	CDE evaluation using modelling studies	195
B 9 4	CDF evaluation using measurement studies on operational BS sites	196
B.0.4	Actual transmitted power or FIRP monitoring counters	108
B 9 6	Configurations with multiple transmitters	198
B 10 Tra	insmitted power or FIRP evaluation	200
B 10 1	General	200
B 10.1	Measurement of the transmitted power in conducted mode	200
B 10 3	Measurement of the transmitted power in OTA conditions	200
D.10.0	medeatement of the transmitted power in or A conditions	

IEC 62232:2	2022 © IEC 2022 – 5 –	
B.10.4	Measurement of the EIRP in OTA and laboratory condition	s201
B.10.5	Measurement of the EIRP in OTA and in-situ conditions	
Annex C (in	formative) Guidelines for the validation of power or EIRP con	trol features
and monitor	ring counter(s) related to the actual maximum approach	
C.1 O)verview	
C.2 G	Guidelines for validating control feature(s) and monitoring coun	ters203
C.3 V	alidation of power or EIRP monitoring counter in laboratory co	onditions204
C.3.1	Validation of power or EIRP monitoring counter in conduct	ed mode –
	test procedure	
C.3.2	Validation of power or EIRP monitoring counter in OTA mo	de – test
0.0.0		
C.3.3	Validation of control feature(s) in laboratory conditions	
C.3.4	Validation of control features using in-situ measurements	
C.4 V	alidation test report	
C.5 C	Case studies	
C.5.1	Case study A – In-situ validation	
C.5.2	Case study B – In-situ validation	
C.5.3	Case study C – In-situ validation	
Annex D (in	formative) Rationale supporting simplified product installation	ı criteria227
D.1 G	Seneral	
D.2 C	Class E2	
D.3 C	Class E10	
D.4 C	lass E100	
D.5 C	Class E+	
D.6 S	implified formulas for millimetre-wave antennas using massive	e MIMO or
be	eam steeringSISLEN IEC 62232.2023	232
Annex E (int	formative) Technology-specific exposure evaluation guidance	-1aaa/c91/13b/s1234
E.1 O	Overview to guidance on specific technologies	
E.2 S	Summary of technology-specific information	
E.3 G	Guidance on spectrum analyser settings	
E.3.1	Overview of spectrum analyser settings	
E.3.2	Detection algorithms	
E.3.3	Resolution bandwidth and channel power processing	
E.3.4	Integration per service	
E.4 S	table transmitted power signals	
E.4.1	TDMA/FDMA technology	
E.4.2	WCDMA/UMTS technology	
E.4.3	OFDM technology	
E.5 W	VCDMA measurement and calibration using a code domain an	alvser241
E.5.1	WCDMA measurements – General	
E.5.2	WCDMA decoder characteristics	
E.5.3	Calibration	242
E.6 W	Vi-Fi measurements	244
H	General	244
E 6 2	Integration time for reproducible measurements	245
E 6 3	Channel occupation	240
E.0.0	Some considerations	240
E.0.4	Measurement configuration and steps	
E.0.5	Influence of the application layers	
L.0.0		······································

E.6.7	Power control	247
E.7	LTE measurements	248
E.7.1	Overview	248
E.7.2	LTE transmission modes	248
E.7.3	LTE-FDD frame structure	249
E.7.4	LTE-TDD frame structure	
E.7.5	Maximum LTE exposure evaluation	
E.7.6	Instantaneous LTE exposure evaluation	
E.7.7	MIMO multiplexing of LTE BS	
E.8	NR BS measurements	
E.8.1	General	
E.8.2	Maximum NR exposure evaluation	
E.9	Establishing compliance boundaries using numerical simulations of MIMO	268
F 9 1	General	268
E.9.2	Field combining near base stations for correlated exposure with the	
	purpose of establishing compliance boundaries	
E.9.3	Numerical simulations of MIMO array antennas with densely packed columns	269
E.9.4	Numerical simulations of large MIMO array antennas	270
E.10	Massive MIMO antennas	
E.10.	1 Overview ANDARD PKEVIEW	
E.10.	2 Deterministic conservative approach	
E.10.	3 Statistical conservative approach	
E.10.4	4 Example approaches	
Annex F (i 2020 brief	nformative) Guidelines for the assessment of BS compliance with ICNIRP-	3h/si 288
	Ceneral en-jec-62232-2023	288
г.т Е 2	Brief exposure limits	288
Г. <u>2</u> Г.2	Implications of brief exposure limits on signal modulation and TDD duty	
1.5	cvcle	
F.4	Implications of brief exposure limits on the actual maximum approach	
Annex G (informative) Uncertainty	
G 1	Background	204
G 2	Requirement to estimate uncertainty	20/
G 3	How to estimate uncertainty	205
0.5 G 4	Guidance on uncertainty and assessment schemes	205
G 4 1	General	205
G.4.1	Overview of assessment schemes	205
G.4.2		206
G.4.3	Assessment schemes and compliance probabilities	200
G.4.4	Guidance on uncertainty	301
G.5 1		201
G.J.1	Measurement uncertainty and confidence levels	202
G.5.2	Applying upportainty for compliance accompany	202
G.0 C 7	Apprying uncertainty for compliance assessments.	204
0.1		204
G.7.1	Calibration uncertainty of measurement enterne or field probe	204
G.7.2	Erequency response of the measurement entenne or field probe	204
9.7.3	Isotropy of the measurement antenna or field probe	206
(2//		

G.7.5	Frequency response of the spectrum analyser	306
G.7.6	Temperature response of a broadband field probe	306
G.7.7	Linearity deviation of a broadband field probe	307
G.7.8	Mismatch uncertainty	307
G.7.9	Deviation of the experimental source from numerical source	307
G.7.10	Meter fluctuation uncertainty for time-varying signals	307
G.7.11	Uncertainty due to power variation in the RF source	308
G.7.12	Uncertainty due to field gradients	308
G.7.13	Mutual coupling between measurement antenna or isotropic probe and object	309
G.7.14	Uncertainty due to field scattering from the surveyor's body	310
G.7.15	Measurement device	312
G.7.16	Fields out of measurement range	312
G.7.17	Noise	313
G.7.18	Integration time	313
G.7.19	Power chain	313
G.7.20	Positioning system	
G 7 21	Matching between probe and the EUT	313
G 7 22	Drifts in output power of the EUT probe temperature and humidity	313
G 7 23	Perturbation by the environment	313
G.8 Eva	mple influence quantities for RE field strength computations by ray	
trac	ing or full wave methods	314
G.8.1	General	314
G.8.2	System	314
G.8.3	Technique uncertainties	
G 8 4	Environmental uncertainties	315
G 9 Infli	Jence quantities for SAR measurements	^{/si} 316
G 9 1	General en-tec-62232-2023	316
G 9 2	Post-processing	316
G 9 3	FUT holder	316
G 9 4	FUT positioning	317
C 0 5	Phantom shell uncertainty	318
G.9.5	SAB correction depending on target liquid permittivity and conductivity	210
G.9.0	SAR correction depending on target indud permittivity and conductivity	210
G.9.7	Liquid temperature	
G.9.0	Liquid temperature	
G.10 IIIII	tiel everaging	319
G.IT Spa		319
G.11.1		
G.11.2	Small-scale fading variations	320
G.11.3	Error on the estimation of local average power density	
G.11.4	Characterization of environment statistical properties	322
G.11.5	Characterization of different spatial averaging schemes	322
G.12 Influ	Jence of human body on measurements of the electric RF field strength	327
G.12.1	Simulations of the influence of human body on measurements based on the method of moments (surface equivalence principle)	327
G.12.2	Comparison with measurements	329
G.12.3	Conclusions	330
Annex H (info	rmative) Guidance on comparing evaluated parameters with a limit value . erview	331

 H.2 Information recommended to compare evaluated value against limit value H.3 Performing a limit comparison at a given confidence level H.4 Performing a limit comparison using a process-based assessment scheme Bibliography 	331 331 332 333
Figure 1 – Quick start guide to the evaluation process	40
Figure 2 – Example of iso-surface compliance boundary	43
Figure 3 – Example of cylindrical and half-pipe compliance boundaries	44
Figure 4 – Example of box shaped compliance boundary	45
Figure 5 – Example of truncated box shaped compliance boundary	45
Figure 6 – Example illustrating the linear scaling procedure	46
Figure 7 – Example of massive MIMO antenna and corresponding beams and envelope patterns	48
Figure 8 – Example of compliance boundary shape for BS antennas with beam steering	48
Figure 9 – Example of dish antenna compliance boundary	49
Figure 10 – Flowchart describing the product installation evaluation process	51
Figure 11 – Example of a CDF curve representing the normalized actual transmitted power or EIRP	53
Figure 12 – Flow chart for product installation compliance based on the actual maximum transmitted power or EIRP threshold(s)	55
Figure 13 – Simplified compliance assessment process using installation classes	56
Figure 14 – Example of DI within a square-shaped assessment domain boundary (ADB) with dimension <i>L</i> _{ADB}	60
Figure 15 – In-situ RF exposure evaluation or assessment process flow chart	st 65
Figure 16 – Source-environment plane concept	69
Figure 17 – Flow chart of the measurement methods	72
Figure 18 – Flow chart of the relevant computation methods	75
Figure 19 – Example of segments used for monitoring and control of BS using mMIMO or beam steering	77
Figure A.1 – Example source-environment plane regions near a base station antenna on a tower	83
Figure A.2 – Example source-environment plane regions near a roof-top antenna that has a narrow vertical (elevation plane) beamwidth (not to scale)	84
Figure A.3 – Geometry of an antenna with largest linear dimension L_{eff} and largest end dimension L_{end}	85
Figure A.4 – Maximum path difference for an antenna with largest linear dimension L	89
Figure B.1 – Cartesian, cylindrical and spherical coordinate systems relative to the BS antenna (view from the rear panel)	97
Figure B.2 – Typical RF exposure assessment case	99
Figure B.3 – Reflection due to the presence of a ground plane	100
Figure B.4 – Reflections due to the presence of internal walls of the housing and surrounding asphalt and soil configuring a base station installed underground	101
Figure B.5 – General representation of RF field strength or power density measurements	102
Figure B.6 – Practical examples of measurement equipment installation	103

IEC 62232:2022 © IEC 2022 - 9 -

Figure B.7 – Spatial averaging schemes relative to walking or standing surface and in the vertical plane oriented to offer maximum area in the direction of the source being evaluated	105
Figure B.8 – Spatial averaging relative to spatial-peak field strength point height	107
Figure B.9 – Evaluation locations	119
Figure B.10 – Relationship of separation of remote radio source and evaluation area to separation of evaluation points	120
Figure B.11 – Outline of the surface scanning methodology	123
Figure B.12 – Block diagram of the antenna measurement system	124
Figure B.13 – Minimum radius constraint, where a denotes the minimum radius of a sphere, centred at the reference point, that encompasses the EUT	125
Figure B.14 – Maximum angular sampling spacing constraint	125
Figure B.15 – Outline of the volume/surface scanning methodology	128
Figure B.16 – Block diagram of typical near-field EUT measurement system	129
Figure B.17 – Examples of positioning of the EUT relative to the relevant phantom	136
Figure B.18 – Phantom liquid volume and measurement volume used for whole-body SAR measurements with the box-shaped phantoms	143
Figure B.19 – Reference frame employed for cylindrical formulas for RF field strength computation at a point P (left), and on a line perpendicular to boresight (right)	147
Figure B.20 – Views illustrating the three valid zones for field strength computation around an antenna	149
Figure B.21 – Enclosed cylinder around collinear array antennas, with and without electrical downtilt	150
Figure B.22 – Spherical formulas reference results	153
Figure B.23 – Cylindrical formulas reference results	153
Figure B.24 – Directions for which SAR estimation expressions are provided	154
Figure B.25 – Description of SAR estimation formulas physical parameters	155
Figure B.26 – Flow chart for the simplified assessment of RF compliance boundary in the line of sight of a parabolic dish antenna	162
Figure B.27 – Radiating cable geometry	163
Figure B.28 – Synthetic model and ray tracing algorithms geometry and parameters	167
Figure B.29 – Line 4 far-field positions for synthetic model and ray tracing validation example	169
Figure B.30 – Antenna parameters for synthetic model and ray tracing algorithms validation example	170
Figure B.31 – Generic 900 MHz BS antenna with nine dipole radiators	177
Figure B.32 – Line 1, 2 and 3 near-field positions for full wave and ray tracing validation	178
Figure B.33 – Generic 1 800 MHz BS antenna with five slot radiators	179
Figure B.34 – BS antenna placed in front of a multi-layered lossy cylinder	185
Figure B.35 – Time variation over 24 h of the exposure induced by NR, GSM and FM, each normalized to the mean value	189
Figure B.36– Generic structure of a base station transmitted RF signal frame	194
Figure B.37 – Example of setup for the direct power level measurement for BS equipped with direct access conducted output ports	201
Figure C.1 – Example of a laboratory test setup for validation of an actual power control feature intended for use with a 5G BS	210