Ropes - Determination of certain physical and mechanical properties

First edition - 1972-11-01
iTeh STANDARD PREVIEW
(standards.iteh.ai)
ISO 2307:1972
https://standards.iteh.ai/catalog/standards/sist/c160b620-alac-4e78-8ada-cdc03c63df41/iso-2307-1972

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the. ISO Council.

International Standard ISO 2307 Was drawn up by Technical Committee V]HW
ISO/TC 38 Textiles.

It was approved in November 1971 by the Member Bodies of the following countries:

Austria	lindia/standards.iteh.ai/catalostaindards/sist/c160b620-alac-4e78-8ada-	
Belgium	Iran	cdc03c
Swedenso-2307-1972		
Czechoslovakia	Ireland	Switzerland
Denmark	Israel	Thailand
Egypt, Arab Rep. of	Japan	Turkey
Finland	New Zealand	United Kingdom
France	Poland	U.S.S.R.
Germany	Romania	
Hungary	South Africa, Rep. of	

The Member Body of the following country expressed disapproval of the document on technical grounds :

Netherlands

Ropes - Determination of certain physical and mechanical properties

AMENDMENT 1

Amendment 1 to International Standard ISO 2307-1972 was drawn up by Technical Committee ISO/TC 38, Textiles, and circulated to the Member Bodies in January 1973.

It has been approved by the Member Bodies of the following countries:

Belgium	Hungary	Romania
Bulgaria	India	South Africa, Rep. of
Canada	Israel	Sweden
Czechoslovakia	Italy	Switzerland
Denmark or	STA Japan RD PRHWTMV	Thailand
Egypt, Arab Rep. of - Cll	$\mathrm{N}=\mathrm{A}$ Nethertands	Turkey
Finland	(stan New Zealand	United Kingdom
France	Lail Norway.LEl.ai)	
Germany	Poland	
	ISO 2307:1972	

The Member Bodies of the following countries expressed disapproval of the document on technical grounds :
cdc03c63df41/iso-2307-1972

Australia

U.S.A.

Page 6

Delete the first two paragraphs of annex A and substitute the following :
"By agreement between the interested parties, the strength of 3 -, 4 - and 8 -strand ropes made from one material and of one linear density of twisted rope yarns, and having breaking strengths above 25000 daN can be calculated from the breaking strength of the yarns by the method indicated below, provided that, before determination of the yarn breaking strength, the rope has fulfilled the specified requirements in all other respects.

In order to obtain the rope yarns necessary for the test, a sufficient length of rope must be untwisted, avoiding any rotation of the individual rope components (for example, yarns, strands) about their own axes. A number of yarns equal to half the nominal diameter of the rope in millimetres shall be tested. For 3 - and 4 -strand ropes $1 / 5$ shall be selected from the centre of the strand. For 8 -strand ropes half the yarns shall be selected from S -twist strands and the remainder from Z-twist strands."

[^0]Add a further column to table 3 under "synthetic fibre ropes" after " 3 - or 8 -strand polypropylene monofilament"

3- or 8-strand polypropylene fibre film 1 1
-
-
0.890
0.880
0.875
0.870
0.865
-
0.855
-
0.845
0.840
0.835

Add the following footnote :
"1) These values are only applicable when the fibre film rope yarns have an elongation at break of at least 7%. The method should not be used when the elongation value is less.'

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 2307:1972
https://standards.iteh.ai/catalog/standards/sist/c160b620-al ac-4e78-8ada-cdc03c63df41/iso-2307-1972

Ropes - Determination of certain physical and mechanical properties

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies, for ropes of different kinds ${ }^{1}$, a method of determining each of the following characteristics :

- net mass per metre;
- lay;
- diameter or circumference ${ }^{2}$);
- elongation;
- breaking strength.

The first three of these characteristiess (net mass per metre lay and diameter or circumference) are those of rope measured under a specified tension called the reference tension.

The elongation measured corresponds to the increase in length of the rope wherhte/stension ito which git tais submitted is increased from an initial value (reference tension) to a value equal to 75% of the minimum specified breaking strength of the rope.

The breaking strength measured is the maximum load registered (or reached) in the course of the breaking test of the test piece carried out on a tensile testing machine with constant rate of traverse of the moving element. The breaking strength values given in the tables of rope specifications are only valid when this type of testing machine is used. When testing of the whole section of the rope is not possible, the method described in Annex A can be used, by agreement between the interested parties.

NOTE - Knowledge of the net mass per metre, measured in accordance with this International Standard, makes possible also the calculation of the net length (under reference tension) of a rope by dividing the net mass of the whole rope (without lashings or packing material) by the mass per metre, these two masses having been measured after conditioning in the same way.

2 REFERENCES

ISO/R 1142, Sampling and conditioning of ropes for testing.

ISO/R 1968, Ropes and cordage - Vocabulary.

3 PRINCIPLE

3.1 Calculation of the net mass per metre by dividing the total mass of the conditioned test piece by its length under reference tension.
3.2 Measurement of the lay and diameter (or Scircumference) at the time of application of reference tension.
3.3 Measurement of breaking strength by increasing the tension to breaking point.

- 3.

3.4 Measurement of elongation (if required) under a tension equal to 75% of the minimum specified rope breaking load, if necessary using another test piece (see Annex B).

4 APPARATUS

4.1 Balance of the appropriate capacity, allowing measurement of mass to an accuracy of 1%.
4.2 Tensile testing machine of appropriate capacity. allowing a constant rate of traverse of the moving element as prescribed in 6.4.1 and in Annex A, and measurement of breaking load to an accuracy of 1%.

[^1]The following different types of grips can be used :

- wedge grips;
- bollards to take eye-spliced test pieces:
- pulley type grips ("cors de chasse").

5 SAMPLING, SELECTION OF TEST PIECES, AND THEIR CONDITIONING

Sampling, selection of test pieces, and their conditioning prior to testing shall be carried out in accordance with the specifications of ISO/R 1142.

To obtain accuracy of measurement, it is recommended that the ends of the test pieces be whipped before separating them from the rest of the coil, and that the cut be made as close as possible to the whipped ends.

Except when otherwise agreed by the interested parties, the test pieces shall be of a sufficient length to give, after mounting on the testing machine, effective lengths, as defined in 6.2 (Figures 1, 2 and 3), at least equal to those listed in Table 1.

TABLE 1 - Effective lengths

	\bigcirc	वra
Type of rope	Type of testing machine	Minimum effective length. L_{U} necessary for testing
		ards, iteh.ai/catalos
Man-made fibre ropes, diameter (in millimetres) or reference number $\leqslant 10$	All kinds	$\begin{aligned} & \text { cdc03c } \\ & 400 \end{aligned}$
Man-made fibre ropes, diameter (in millimetres) or reference number >10	Wedge grip or cors de chasse machine	600
	Other kinds	1800
Natural fibre ropes	All kinds	1800

6 PROCEDURE

6.1 Initial measurements

The test piece of appropriate length having been laid out by hand on a flat surface, measure its length to $\pm 0.5 \%$ before splicing or unstranding for fixing on the testing machine. This length, in metres, is designated as L_{0}.

Make two marks on the test piece, spaced symmetrically about its mid-point and at least 0.50 m apart. The distance between these marks is designated D_{0}.
NOTE - In the case of man-made fibre ropes of small diameter, for which a minimum effective length of 400 mm is specified in Table 1, the requirements of this clause can be met by making two marks at least 0.50 m apart on a specimen of rope laid out on a flat surface by hand.
Determine the mass of the test piece to the nearest 1.0%. This mass, expressed in grams, is designated as m_{0}.

6.2 Mounting of the test piece on the testing machine

6.2.1 Fix the ends of the test piece between the wedge grips, or on the cors de chasse, or by its eye splices on the bollards, according to the type of grips used, in such a way as to obtain the effective length, L_{u}, of test piece specified in Table 1.

The effective length, L_{u}, shall be measured under zero tension, the test piece being simply held straight for each of the three principal types of grips.

The separation of strands by untwisting or unplaiting the ends of the test piece in the case when the testing is carried out as indicated by Figures 1 and 3, shall not be done before testing.

NOTE - Nevertheless, in the case of cors de chasse, ropes of diameter above 12 mm can be untwisted or unplaited beyond point " d " on the circumference of the pulleys for the purpose of fixing the ends on the cors de chasse.

The limiting marks " r " of the test piece shall be positioned in line with the grips.

FIGURE 1 - Test piece mounted between wedge grips

The limiting marks " r " shall be 150 mm from the last turn of the splice.

FIGURE 2 - Eye-spliced test piece between two bollards

Eyes shall have an internal length of between 250 and 300 mm when measured closed and splices shall be made to the manufacturer's discretion. In the case of man-made fibre ropes it is recommended that the end of the splices be tapered to finish.

The bollard diameter (B) shall be at least 100 mm for ropes of a nominal diameter of 40 mm or less, and 150 mm for ropes with a nominal diameter above 40 mm .

The limiting marks " r " shall be positioned where the rope leaves the cor de chasse.

FIGURE 3 - Test piece mounted on pulleys ("cors de chasse")
6.2.2 With the test piece mounted on the testing machine apply the marks " r " limiting the portion of the test piece within which the rope is normally expected to break during the course of the breaking test.
6.3 Measurement of diameter (or circumference), lay and new distance between marks

Apply to the test piece the reference tension specified in R Table 2 for the type of rope concerned, then while the test piece is under tension carry out the following measurements.

6.3.1 Diameter and circumference of the rope

The nominal diameter and the nominal circumference are 1 /iso approximate values. Checking of these characteristics is only possible if a previous agreement on the method of measuring values and tolerances has taken place between the interested parties at the time of ordering.

6.3.2 Length of lay ${ }^{1)}$ of cabled or plaited ropes

Measure the length of n complete turns of the same strand, or, in the case of plaited rope, the length between n successive points of plaiting. This length, expressed in metres, is designated as d.
-

FIGURE 4 - Lay of cabled rope

[^2]TABLE 2 - Load to be applied to ropes for the measurement of net mass per metre, lay, diameter (or circumference) and, if necessary, net length

Nominal diameter (or reference number)	Nominal circumference	Reference tension for			
		natural		man-made fibre ropes	
mm	in		$\begin{gathered} \text { kgf } \\ \text { (approx.) } \end{gathered}$	daN (Tolerance $\pm 5 \%)$	$\begin{gathered} \text { kgf } \\ \text { (approx.) } \end{gathered}$
4	$1 / 2$			2	2
5	$5 / 8$			2.9	3
6	${ }^{3} / 4$			3.9	4
7	$7 / 8$			5.9	6
8	1	11	11	7.8	8
9	11/8			9.8	10
10	$1^{1 / 4}$	14	14	13	13
11	$1{ }^{3} / 8$			15	15
12	$1^{1 / 2}$	20	20	18	18
13	$1^{5} / 8$.	21	21
14	$1^{3} / 4$	29	30	24	25
16	2	39	40	29	30
18	$2^{1 / 4}$	49	50	39	40
20	2 $1 / 2$	- 69	70	49	50
22	$2^{3} I_{4}$	- 78	80	59	60
	- 3	88	90	69	70
-26.20	- $3^{1 / 4}$	108	110	83	85
28	$3^{1 / 2}$	118	120	93	95
230	$3^{3} / 4$	137	140	108	110
1232	4	157	160	118	120
ist/c16062	- $41 / 2$	78-896a-	200	147	150
${ }^{307}{ }^{\text {4 }}$	5	235	240	176	180
44	$5^{1 / 2}$	285	290	210	215
48	6	330	340	240	250
52	$6^{1 / 2}$	390	400	290	295
56	7	440	450	330	335
60	$7^{1 / 2}$	500	510	380	385
64	8	570	580	420	430
68	$8^{1 / 2}$	630	640	-	-
72	9	700	710	530	540
76	$9^{1 / 2}$	750	770	-	-
80	10	820	840	650	660
88	11	980	1000	770	785
96	12	1080	1100	910	925
		One lay 10	or stitch)		

FIGURE 5 - Lay of plaited rope

6.3.3 New distance between marks

Measure the new distance between the marks made on the test piece at the time of initial measurement (see 6.1). This distance is designated as D_{p}.

In the case of specimens of man-made fibre ropes of small diameter having a minimum effective length of 400 mm , the value of D_{p} can be obtained by placing on a specimen of rope laid out on a surface the initial marks specified in 6.1 , at a distance of at least 0.50 m , and by applying the appropriate tension by means of weights over a pulley.

6.4 Measurement of elongation and breaking strength

fncrease tension by means of the moving element of the testing machine until breakage of the rope occurs.

6.4.1 Speed of testing

The rate of traverse of the moving element of the testing machine shall be constant, and shall be, in millimetres per minute, within the limits of 6 to 10% of the numerical value of the effective length of the test piece expressed in millimetres. For all man-made fibre ropes, the rate of traverse of the moving element shall not exceed $250 \mathrm{~mm} / \mathrm{min}$.

6.4.2 Elongation

When elongation values are required, a special test piece shall be used and the method for obtaining the plot of load/elongation shall be that given in Annex B.

NOTES

hittps://standards.iteh.ai/catalog/s
1 If the method recommended in Annex B is not required the load/elongation values recorded during tensile testing can be used.

2 By previous agreement between the interested parties, a measurement of elongation can also be made by stopping, for as short a time as possible, the action of the moving element when the tensile load has reached 75% of the minimum specified rope breaking load.

6.4.3 Breakage

It is important to determine the location of the break on the test piece on completion of the test, in order to establish whether or not the test results represent the true strength of the rope. Damage to the test piece caused by holding devices can seriously affect the results of the test, and in consequence the marks shall have been made on the sample before the application of the load, as indicated in 6.2.

Breakage should occur between the two marks on the test piece.

If breakage takes place beyond these marks and below the specified breaking strength, the test piece shall be considered to be conforming to tensile strength specifications if the load recorded is not less than 90% of the specified breaking strength. If not, the test shall be discarded and a new test carried out.

It is not permitted to report, as a test result, a breaking strength having a value other than the value actually recorded during testing.

7 EXPRESSION OF RESULTS

7.1 Net mass per metre (or linear density)

The net mass per metre, m, is given by the formula

$$
m=\frac{m_{0}}{L}
$$

where
m_{o} is the mass;
L is the length, in metres, of the test piece under reference tension, calculated by the formula

$$
L=\frac{D_{\mathrm{p}} \times L_{\mathrm{o}}}{D_{\mathrm{o}}}
$$

$D_{\text {o }}$ being the initial distance between marks measured in accordance with 6.1;
D_{p} being the distance between these marks measured under reference tension in accordance with 6.3;
L_{0} being the initial total length of the test piece, in metres, measured in accordance with 6.1.

Take the average value of net mass per metre for all of the test pieces submitted to the test; express the result in grams per metre or in kilotex.
NOTE I If the approximate length of a coil or rope under reference tension is required, calculate this by dividing the net mass of the rope by the net mass per metre.

SO 2307:1972

7.2 Diameter (or circumference)

Take the arithmetical average of the measured diameters (or circumferences) for all the test pieces submitted to the test; express the result in millimetres.

7.3 Lay

The length of lay is equal to

$$
\frac{d}{n}
$$

where d is the length of n complete turns of the same strand, or, in the case of plaited ropes, the length between n successive points of plaiting (see 6.3.2).

Take the average of the measured lay for all the test pieces submitted to the test; express the result in millimetres.

7.4 Elongation (see also Annex B)

The value of the elongation, A, expressed as a percentage, is given by the formula

$$
A=\frac{D_{\mathrm{a}}-D_{\mathrm{p}}}{D_{\mathrm{p}}} \times 100
$$

where
D_{a} is the distance between marks under a tension equal to 75% of the minimum specified breaking strength;
D_{p} is the distance between marks measured under reference tension.

7.5 Breaking strength

Express the result in decanewtons (daN) for each test piece, without taking the average, indicating whether the break occurred between the marks.

8 TEST REPORT

The test report shall include the following particulars:
a) the results obtained;
b) reference to this International Standard;
c) the particular testing conditions (conditioning of the test pieces, type of testing machine used, procedure used for the determination of elongation, and use of the method described in Annex A if relevant);
d) the individual values used in the calculation of results;
e) any operational details not given in this International Standard, as well as any incidents which may have affected the results.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 2307:1972
hitps://standards.iteh.ai/catalog/standards/sist/c160b620-a1 ac-4e78-8ada-cdc03c63df41/iso-2307-1972

[^0]: Descriptors : rope, dimensions, diameters, linear density, mechanical properties, breaking strength, elongation, tension tests, tests.

[^1]: 1) The particular specifications for each type of rope are the subject of the following ISO Recommendations:

 - ISO/R 1140, Three-strand polyamide multifilament ropes.
 - ISO/R 1141, Three-strand polvester multifilament ropes.
 - ISO/R 1181, Three or four-strand manila and sisal ropes.
 - ISO/R 1346, Three-strand (hawser-laid) and eight-strand (plaited) polvpropylene monofilament or film ropes.
 - ISO/R 1969, Three-strand polyethylene monofilament ropes.
 - ISO/R 1970, Eight-strand plaited manila and sisal ropes.

 2) For measurement (under tension) of the diameter and the circumference, the methods given here concern the presentation of the rope; the detailed measuring procedure shall be arranged between the interested parties beforehand.
[^2]: 1) The lay of a rope is defined in ISO/R 1968.
